1 |
Etude d'estimations d'erreur a posteriori et d'adaptivité basée sur des critères d'arrêt et raffinement de maillages pour des problèmes d'écoulements multiphasiques et thermiques. Application aux procédés de récupération assistée d'huileYousef, Soleiman 10 December 2013 (has links) (PDF)
L'objectif de cette thèse est l'analyse d'erreur a posteriori et la proposition de stratégies d'adaptivité basées sur des critères d'arrêt et de raffinement local de maillage. Nous traitons une classe d'équations paraboliques dégénér ées multidimensionnelles modélisant des problèmes importants pour l'industrie. Au chapitre 1 nous considérons le problème de Stefan instationaire a deux phases qui modélise un processus de changement de phase régi par la loi de Fourier. Nous régularisons la relation entre l'enthalpie et la température et nous discrétisons le problème par la méthode d'Euler implicite en temps et un schéma numérique conforme en espace tel que les élément finis conformes, ou les volumes finis centrés aux sommets du maillage. Nous démontrons une borne supérieure de la norme duale du résidu, de l'erreur sur l'enthalpie dans L2(0; T;H-1) et de l'erreur sur la température dans L2(0; T;L2), par des estimateurs d'erreur entièrement calculables. Ces estimateurs comprennent : un estimateur associé à l'erreur de régularisation, un estimateur associé à l'erreur d'une méthode de linéarisation (par exemple, la méthode de Newton), un estimateur associé à l'erreur en temps et un estimateur associé à l'erreur du schéma en espace. Par conséquent, ces estimateurs permettent de formuler un algorithme adaptatif de résolution où les erreurs associées peuvent être équilibrées. Nous proposons également une stratégie de raffinement local de maillages. En fin, nous prouvons l'efficacité de nos estimations d'erreur a posteriori. Un test numérique illustre l'efficacité de nos estimateurs et la performance de l'algorithme adaptatif. En particulier, des indices d'efficacité proches de la valeur optimale de 1 sont obtenus. Au chapitre 2 nous développons des estimations d'erreur a posteriori pour l'écoulement de Darcy polyphasique et isothermique, décrit par un système couplé d'équations aux dérivées partielles non linéaires et d'équations algébriques non linéaires. Ce système est discrétisé en espace par une méthode de volume finis centrés par maille et la méthode d'Euler implicite en temps. Nous etablissons une borne supérieure d'une norme duale du résidu augmentée d'un terme qui tiens compte de la non-conformité des volumes finis par des estimateurs d'erreur a posteriori entièrement calculables. Dans ce chapitre, nous nous concentrons sur la formulation d'un critère d'arrêt de l'algorithme de linéarisation du problème discrète (tel que la méthode de Newton) avec un critère d'arrêt du solveur algébrique de résolution du système linéarité (par exemple la méthode GMRes), de sort que les contributions des estimateurs d'erreur correspondant n'affectent plus la somme globale des estimateurs d'erreur de manière significative. Nous appliquons notre analyse sur des exemples réalistes d'ingénierie de réservoir pour confirmer qu'en général notre ajustement des critères d'arrêt apporte une économie significative (jusqu'au un ordre de magnitude en termes du nombre total des itérations du solveur algébrique), déjà sur des maillages fixes, et ceci sans perte notable de précision. Au chapitre 3 nous complétons le modèle décrit au chapitre 2 en considérant une condition non-isothermique pour l'écoulement a fin de traiter le modèle général d'écoulement polyphasique thermique dans les milieux poreux. Pour ce problème, nous développons des estimateurs d'erreur analogues a ceux du chapitre 2 pour lesquels nous établissons une borne supérieure d'erreur entièrement calculable, pour une norme duale du résidu complétée par un terme d'évaluation de la non-conformité. Nous montrons ensuite comment estimer séparément chaque composante d'erreur, ce qui nous permet d'ajuster les critères d'arrêt et d'équilibrer les contributions des différents estimateurs d'erreur : erreur d'approximation en temps, erreur d'approximation en espace, erreur de linéarisation et erreur du solveur algébrique. Ce chapitre se termine par une application des estimateurs au modèle d'huile morte. La preuve de l'efficacité de notre estimation a postiriori est egalement fournie. Finalement, au chapitre 4 nous considérons les procédés de récupération assistée d'huile. Plus précisément, nous étudions une technique de récupération thermique d'huile de type huile morte par injection de vapeur destinée a augmenter la mobilité des hydrocarbures. Dans ce chapitre, nous appliquons l'analyse a posteriori des chapitres 2 et 3, nous proposons une formule de quadrature pour simplifier l'évaluation des estimateurs, nous proposons un algorithme adaptatif de raffinement de maillages en espace et en temps basé sur les estimateurs et nous illustrons pas des essais numériques sur des exemples réalistes la performance de cette stratégie de raffinement. Notamment, des gains significatifs sont réalisés en terme du nombre de mailles nécessaires pour la simulation sur des exemples en dimension trois.
|
Page generated in 0.1059 seconds