Spelling suggestions: "subject:"épissages""
1 |
Structure et expression des gènes mitochondriaux de Diplonema papillatumMarande, William January 2007 (has links)
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
|
2 |
Décodage de l'expression de gènes cryptiquesMoreira, Sandrine 08 1900 (has links)
Pour certaines espèces, les nouvelles technologies de séquençage à haut débit et les pipelines automatiques d'annotation permettent actuellement de passer du tube Eppendorf au fichier genbank en un clic de souris, ou presque. D'autres organismes, en revanche, résistent farouchement au bio-informaticien le plus acharné en leur opposant une complexité génomique confondante. Les diplonémides en font partie. Ma thèse est centrée sur la découverte de nouvelles stratégies d'encryptage de l'information génétique chez ces eucaryotes, et l'identification des processus moléculaires de décodage.
Les diplonémides sont des protistes marins qui prospèrent à travers tous les océans de la planète. Ils se distinguent par une diversité d'espèces riche et inattendue. Mais la caractéristique la plus fascinante de ce groupe est leur génome mitochondrial en morceaux dont les gènes sont encryptés. Ils sont décodés au niveau ARN par trois processus: (i) l'épissage en trans, (ii) l'édition par polyuridylation à la jonction des fragments de gènes, et (iii) l'édition par substitution de A-vers-I et C-vers-T; une diversité de processus posttranscriptionnels exceptionnelle dans les mitochondries.
Par des méthodes bio-informatiques, j'ai reconstitué complètement le transcriptome mitochondrial à partir de données de séquences ARN à haut débit. Nous avons ainsi découvert six nouveaux gènes dont l'un présente des isoformes par épissage alternatif en trans, 216 positions éditées par polyuridylation sur 14 gènes (jusqu'à 29 uridines par position) et 114 positions éditées par déamination de A-vers-I et C-vers-T sur sept gènes (nad4, nad7, rns, y1, y2, y3, y5).
Afin d'identifier les composants de la machinerie réalisant la maturation des ARNs mitochondriaux, le génome nucléaire a été séquencé, puis je l'ai assemblé et annoté. Cette machinerie est probablement singulière et complexe car aucun signal en cis ni acteur en trans caractéristiques des machineries d'épissage connues n'a été trouvé. J'ai identifié plusieurs candidats prometteurs qui devront être validés expérimentalement: des ARN ligases, un nombre important de protéines de la famille des PPR impliquées dans l'édition des ARNs dans les organites de plantes, ainsi que plusieurs déaminases.
Durant ma thèse, nous avons mis en évidence de nouveaux types de maturation posttranscriptionnelle des ARNs dans la mitochondrie des diplonémides et identifié des candidats prometteurs de la machinerie. Ces composants, capables de lier précisément des fragments d'ARN et de les éditer pourraient trouver des applications biotechnologique. Au niveau évolutif, la caractérisation de nouvelles excentricités moléculaires de ce type nous donne une idée des processus de recrutement de gènes, de leur adaptation à de nouvelles fonctions, et de la mise en place de machineries moléculaires complexes. / Thanks to new high throughput sequencing technologies and automatic annotation pipelines, proceeding from an eppendorf tube to a genbank file can be achieved in a single mouse click or so, for some species. Others, however, fiercely resist bioinformaticians with their confounding genomic complexity. Diplonemids are one of them. My thesis is centered on the discovery of new strategies for encrypting genetic information in eukaryotes, and the identification of molecular decoding processes.
Diplonemids are a group of poorly studied marine protists. Unexpectedly, metagenomic studies have recently ranked this group as one of the most diverse in the oceans. Yet, their most distinctive feature is their multipartite mitochondrial genome with genes in pieces, and encryption by nucleotide deletions and substitutions. Genes are decrypted at the RNA level through three processes: (i) trans-splicing, (ii) polyuridylation at the junction of gene pieces and (iii) substitutions of A-to-I and C-to-T. Such a diverse arsenal of mitochondrial post-transcriptional processes is highly exceptional.
Using a bioinformatics approach, I have reconstructed the mitochondrial transcriptome from RNA-seq libraries. We have identified six new genes including one that presents alternative trans-splicing isoforms. In total, there are 216 uridines added in 14 genes with up to 29 U insertions, and 114 positions edited by deamination (A-to-I or C-to-T) among seven genes (nad4, nad7, rns, y1, y2, y3, y5).
In order to identify the machinery that processes mitochondrial RNAs, the nuclear genome has been sequenced. I have then assembled and annotated the genome. This machinery is probably unique and complex because no cis signal or trans actor typical for known splicing machineries have been found. I have identified promising protein candidates that are worth to be tested experimentally, notably RNA ligases, numerous members of the PPR family involved in plants RNA editing and deaminases.
During my thesis, we have identified new types of post-transcriptional RNA processing in diplonemid mitochondria and identified new promising candidates for the machinery. A system capable of joining precisely or editing RNAs could find biotechnological applications. From an evolutionary perspective, the discovery of new molecular systems gives insight into the process of gene recruitment, adaptation to new functions and establishment of complex molecular machineries.
|
3 |
Study of cox1 trans-splicing in Diplonema papillatum mitochondriaYan, Yifei 07 1900 (has links)
Diplonema papillatum est un organisme unicellulaire qui vit dans l’océan. Son génome mitochondrial possède une caractéristique spéciale: tous les gènes sont brisés en de multiples fragments qui s’appellent modules. Chaque module est codé par un chromosome différent. L’expression d’un gène exige des épissages-en-trans qui assemblent un ARN messager complet à partir de tous les modules du gène. Nous avons précédemment montré que le gène cox1 est encodé dans neuf modules avec six Us non encodés entre le module 4 et le module 5 de l’ARN messager mature [1]. Nous n’avons identifié aucune séquence consensus connue de site d’épissage près des modules. Nous spéculons qu’un ARN guide (gRNA) a dirigé l’épissage-en-trans du gène cox1 par un mécanisme qui est semblable à l’édition d’ARN par l’insertion/la suppression des Us chez les kinétoplastides, le groupe sœur des diplonémides. Nous avons trouvé que les six Us sont ajoutés au bout 3’ de l’ARN d’une façon semblable à ceux ajoutés par le TUTase lors de l’édition de l’insertion des Us chez les kinétoplastides. Nous avons construit des profils de gRNA de l’épissage-en-trans avec les expressions régulières basé sur notre connaissance des gRNAs dans l’édition d’ARN chez les kinétoplastides. Selon la complémentarité partielle entre le gRNA et les deux modules adjacents, nous avons généré des amorces pour RT-PCR visant à détecter des séquences qui sont assorties à un des profils de gRNA. Une expérience pilote in vitro n’a pas permis de reconstituer l’épissage-en-trans des modules 3, 4, et 5, suggérant que nous devons améliorer nos techniques. / Diplonema papillatum is a single cellular organism that lives in the ocean. Its mitochondrial genome possesses a special feature: all genes are fragmented in multiple pieces that are called modules and each module is encoded by a different chromosome. Expression of a gene requires trans-splicing that successfully assemble a full-length mRNA from all modules of the gene. It was previously shown that the cox1 gene is encoded in nine modules that are all located on different chromosomes; moreover, a stretch of six non-encoded Us exist between Module 4 and 5 in the mature mRNA [1]. No consensus sequence of known splicing sites was identified near the modules. We speculate that trans-splicing of the cox1 gene is directed by guide RNAs (gRNAs) via a mechanism that is similar to U-insertion/deletion editing in kinetoplastids, the sister group of diplonemids. We have detected populations of small RNA molecules that could come from mitochondrial. We found that the six Us were added to the 3’ end of Module 4 in a similar way to the Us added by the TUTase in kinetoplastid U-insertional editing. Sequence profiles of possible trans-splicing gRNAs were constructed in regular expressions based on our knowledge of known gRNAs in kinetoplastid RNA editing. According to the complementarity between the gRNA and the two adjacent modules, primers were designed for RT-PCR that aims to detect gRNA sequences. Among the results, we identified sequences that match or partially match the gRNA profiles. A pilot in vitro assay did not reconstitute trans-splicing of module 3, 4 and 5, suggesting that further technical improvements are needed.
|
4 |
Study of cox1 trans-splicing in Diplonema papillatum mitochondriaYan, Yifei 07 1900 (has links)
Diplonema papillatum est un organisme unicellulaire qui vit dans l’océan. Son génome mitochondrial possède une caractéristique spéciale: tous les gènes sont brisés en de multiples fragments qui s’appellent modules. Chaque module est codé par un chromosome différent. L’expression d’un gène exige des épissages-en-trans qui assemblent un ARN messager complet à partir de tous les modules du gène. Nous avons précédemment montré que le gène cox1 est encodé dans neuf modules avec six Us non encodés entre le module 4 et le module 5 de l’ARN messager mature [1]. Nous n’avons identifié aucune séquence consensus connue de site d’épissage près des modules. Nous spéculons qu’un ARN guide (gRNA) a dirigé l’épissage-en-trans du gène cox1 par un mécanisme qui est semblable à l’édition d’ARN par l’insertion/la suppression des Us chez les kinétoplastides, le groupe sœur des diplonémides. Nous avons trouvé que les six Us sont ajoutés au bout 3’ de l’ARN d’une façon semblable à ceux ajoutés par le TUTase lors de l’édition de l’insertion des Us chez les kinétoplastides. Nous avons construit des profils de gRNA de l’épissage-en-trans avec les expressions régulières basé sur notre connaissance des gRNAs dans l’édition d’ARN chez les kinétoplastides. Selon la complémentarité partielle entre le gRNA et les deux modules adjacents, nous avons généré des amorces pour RT-PCR visant à détecter des séquences qui sont assorties à un des profils de gRNA. Une expérience pilote in vitro n’a pas permis de reconstituer l’épissage-en-trans des modules 3, 4, et 5, suggérant que nous devons améliorer nos techniques. / Diplonema papillatum is a single cellular organism that lives in the ocean. Its mitochondrial genome possesses a special feature: all genes are fragmented in multiple pieces that are called modules and each module is encoded by a different chromosome. Expression of a gene requires trans-splicing that successfully assemble a full-length mRNA from all modules of the gene. It was previously shown that the cox1 gene is encoded in nine modules that are all located on different chromosomes; moreover, a stretch of six non-encoded Us exist between Module 4 and 5 in the mature mRNA [1]. No consensus sequence of known splicing sites was identified near the modules. We speculate that trans-splicing of the cox1 gene is directed by guide RNAs (gRNAs) via a mechanism that is similar to U-insertion/deletion editing in kinetoplastids, the sister group of diplonemids. We have detected populations of small RNA molecules that could come from mitochondrial. We found that the six Us were added to the 3’ end of Module 4 in a similar way to the Us added by the TUTase in kinetoplastid U-insertional editing. Sequence profiles of possible trans-splicing gRNAs were constructed in regular expressions based on our knowledge of known gRNAs in kinetoplastid RNA editing. According to the complementarity between the gRNA and the two adjacent modules, primers were designed for RT-PCR that aims to detect gRNA sequences. Among the results, we identified sequences that match or partially match the gRNA profiles. A pilot in vitro assay did not reconstitute trans-splicing of module 3, 4 and 5, suggesting that further technical improvements are needed.
|
Page generated in 0.0404 seconds