• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Study of cox1 trans-splicing in Diplonema papillatum mitochondria

Yan, Yifei 07 1900 (has links)
Diplonema papillatum est un organisme unicellulaire qui vit dans l’océan. Son génome mitochondrial possède une caractéristique spéciale: tous les gènes sont brisés en de multiples fragments qui s’appellent modules. Chaque module est codé par un chromosome différent. L’expression d’un gène exige des épissages-en-trans qui assemblent un ARN messager complet à partir de tous les modules du gène. Nous avons précédemment montré que le gène cox1 est encodé dans neuf modules avec six Us non encodés entre le module 4 et le module 5 de l’ARN messager mature [1]. Nous n’avons identifié aucune séquence consensus connue de site d’épissage près des modules. Nous spéculons qu’un ARN guide (gRNA) a dirigé l’épissage-en-trans du gène cox1 par un mécanisme qui est semblable à l’édition d’ARN par l’insertion/la suppression des Us chez les kinétoplastides, le groupe sœur des diplonémides. Nous avons trouvé que les six Us sont ajoutés au bout 3’ de l’ARN d’une façon semblable à ceux ajoutés par le TUTase lors de l’édition de l’insertion des Us chez les kinétoplastides. Nous avons construit des profils de gRNA de l’épissage-en-trans avec les expressions régulières basé sur notre connaissance des gRNAs dans l’édition d’ARN chez les kinétoplastides. Selon la complémentarité partielle entre le gRNA et les deux modules adjacents, nous avons généré des amorces pour RT-PCR visant à détecter des séquences qui sont assorties à un des profils de gRNA. Une expérience pilote in vitro n’a pas permis de reconstituer l’épissage-en-trans des modules 3, 4, et 5, suggérant que nous devons améliorer nos techniques. / Diplonema papillatum is a single cellular organism that lives in the ocean. Its mitochondrial genome possesses a special feature: all genes are fragmented in multiple pieces that are called modules and each module is encoded by a different chromosome. Expression of a gene requires trans-splicing that successfully assemble a full-length mRNA from all modules of the gene. It was previously shown that the cox1 gene is encoded in nine modules that are all located on different chromosomes; moreover, a stretch of six non-encoded Us exist between Module 4 and 5 in the mature mRNA [1]. No consensus sequence of known splicing sites was identified near the modules. We speculate that trans-splicing of the cox1 gene is directed by guide RNAs (gRNAs) via a mechanism that is similar to U-insertion/deletion editing in kinetoplastids, the sister group of diplonemids. We have detected populations of small RNA molecules that could come from mitochondrial. We found that the six Us were added to the 3’ end of Module 4 in a similar way to the Us added by the TUTase in kinetoplastid U-insertional editing. Sequence profiles of possible trans-splicing gRNAs were constructed in regular expressions based on our knowledge of known gRNAs in kinetoplastid RNA editing. According to the complementarity between the gRNA and the two adjacent modules, primers were designed for RT-PCR that aims to detect gRNA sequences. Among the results, we identified sequences that match or partially match the gRNA profiles. A pilot in vitro assay did not reconstitute trans-splicing of module 3, 4 and 5, suggesting that further technical improvements are needed.
2

Study of cox1 trans-splicing in Diplonema papillatum mitochondria

Yan, Yifei 07 1900 (has links)
Diplonema papillatum est un organisme unicellulaire qui vit dans l’océan. Son génome mitochondrial possède une caractéristique spéciale: tous les gènes sont brisés en de multiples fragments qui s’appellent modules. Chaque module est codé par un chromosome différent. L’expression d’un gène exige des épissages-en-trans qui assemblent un ARN messager complet à partir de tous les modules du gène. Nous avons précédemment montré que le gène cox1 est encodé dans neuf modules avec six Us non encodés entre le module 4 et le module 5 de l’ARN messager mature [1]. Nous n’avons identifié aucune séquence consensus connue de site d’épissage près des modules. Nous spéculons qu’un ARN guide (gRNA) a dirigé l’épissage-en-trans du gène cox1 par un mécanisme qui est semblable à l’édition d’ARN par l’insertion/la suppression des Us chez les kinétoplastides, le groupe sœur des diplonémides. Nous avons trouvé que les six Us sont ajoutés au bout 3’ de l’ARN d’une façon semblable à ceux ajoutés par le TUTase lors de l’édition de l’insertion des Us chez les kinétoplastides. Nous avons construit des profils de gRNA de l’épissage-en-trans avec les expressions régulières basé sur notre connaissance des gRNAs dans l’édition d’ARN chez les kinétoplastides. Selon la complémentarité partielle entre le gRNA et les deux modules adjacents, nous avons généré des amorces pour RT-PCR visant à détecter des séquences qui sont assorties à un des profils de gRNA. Une expérience pilote in vitro n’a pas permis de reconstituer l’épissage-en-trans des modules 3, 4, et 5, suggérant que nous devons améliorer nos techniques. / Diplonema papillatum is a single cellular organism that lives in the ocean. Its mitochondrial genome possesses a special feature: all genes are fragmented in multiple pieces that are called modules and each module is encoded by a different chromosome. Expression of a gene requires trans-splicing that successfully assemble a full-length mRNA from all modules of the gene. It was previously shown that the cox1 gene is encoded in nine modules that are all located on different chromosomes; moreover, a stretch of six non-encoded Us exist between Module 4 and 5 in the mature mRNA [1]. No consensus sequence of known splicing sites was identified near the modules. We speculate that trans-splicing of the cox1 gene is directed by guide RNAs (gRNAs) via a mechanism that is similar to U-insertion/deletion editing in kinetoplastids, the sister group of diplonemids. We have detected populations of small RNA molecules that could come from mitochondrial. We found that the six Us were added to the 3’ end of Module 4 in a similar way to the Us added by the TUTase in kinetoplastid U-insertional editing. Sequence profiles of possible trans-splicing gRNAs were constructed in regular expressions based on our knowledge of known gRNAs in kinetoplastid RNA editing. According to the complementarity between the gRNA and the two adjacent modules, primers were designed for RT-PCR that aims to detect gRNA sequences. Among the results, we identified sequences that match or partially match the gRNA profiles. A pilot in vitro assay did not reconstitute trans-splicing of module 3, 4 and 5, suggesting that further technical improvements are needed.
3

In silico identification of PPR proteins

Le Sieur, Félix-Antoine 08 1900 (has links)
Les protéines PentatricoPeptide-Repeats (PPR) représentent la plus grande famille de protéines de liaison à l’ARN connue. Elles sont caractérisées par la présence de motifs répétés en tandem d’environ 35 résidus ayant une structure hélice-tour-hélice. Depuis les premières études sur l’organisme modèle Arabidopsis thaliana, les protéines PPR ont aussi été découvertes chez d’autres espèces non-plantes, incluant les levures et l’humain. Cependant, la détection des protéines PPR en dehors des plantes est compliquée par le fait que les outils de recherche sont tous conçus pour les protéines de plantes. Récemment, une étude réalisée chez les levures a rapporté une méthode itérative semi-automatisée d’identification de PPR utilisant des profils Hidden Markov Models (HMM). Inspirés par cette approche, nous visons ici à développer une méthode complètement automatisée plus généralisable et sensible qui ne dépend pas du protéome de départ. Comme preuve de concept, nous avons choisi une espèce non reliée aux plantes possédant le plus grand nombre de protéines PPR en-dehors des plantes – le protiste marin unicellulaire Diplonema papillatum. Il s’agit d’un modèle émergent ayant reçu beaucoup d’intérêt pour l’excentricité de l’expression de son génome mitochondrial, pour lequel il a été suggéré que les protéines PPR jouent un rôle clé. Nous avons ici développé une approche itérative pour identifier et cataloguer les protéines PPR chez D. papillatum. Les fonctionnalités particulières de notre algorithme incluent l’inspection des intervalles de 30 à 40 résidus entre les motifs classiques déjà identifiés et l’utilisation des structures secondaires caractéristiques des motifs PPR pour valider les motifs candidats nouvellement identifiés. Au final, nous avons identifié près de 800 motifs PPR chez D.papillatum, dont plusieurs motifs « déviants » identifiés dans les espaces entre les motifs. La validation expérimentale des motifs candidats les plus prometteurs est en attente. / PentatricoPeptide-Repeat (PPR) proteins represent the largest family of RNA-binding proteins known. They are defined by containing tandemly arranged, ~35-residue long motifs assuming a helix-turn-helix structure, which are referred to as PPR motifs. Since the seminal studies undertaken in the model organism Arabidopsis, a few PPR proteins have been also discovered outside plants, including yeast and human. However, the detection of PPR proteins in non-plant eukaryotes is complicated by the fact that current search tools are tailored toward plants. Recently, a semi-automated method has been reported for identifying PPR motifs in yeast using iterative searches with profile Hidden Markov models (HMMs). Inspired by this work, we aimed to develop a fully automated, sensitive approach that can be used for detecting PPR proteins in any species, when using the corresponding proteome as input. For a proof of concept, we used a species that contains the largest number of PPR genes outside the plant kingdom –the unicellular protist Diplonema papillatum. This emerging model system has garnered much interest for the eccentricities of its mitochondrial gene expression, in which PPR proteins are posited to play a key role. Here, we have developed an iterative HMM-search method that comprehensively catalogues and classifies PPR motifs in D. papillatum. Particular features of our algorithm are that it inspects closely 30 to 40 residue-long intervals between readily identified (classical) motifs, makes use of the characteristic secondary structure of PPR motifs to validate newly detected candidate motifs. In total, we have identified around 800 PPR motifs in D. papillatum. Including several deviant candidates detected in ”gaps”. High ranking representatives of both classical and deviant motifs await experimental validation.
4

Caractérisation in silico et purification des ligases à ARN de type RtcB de Diplonema papillatum

Léveillé-Kunst, Alexandra 12 1900 (has links)
Les acides ribonucléiques (ARN) subissent plusieurs modifications posttranscriptionnelles avant de remplir leur rôle dans la cellule. Un des acteurs responsables de ces modifications sont les ligases à ARN. Il existe deux grandes familles de ligases à ARN soit les « ATP-grasp » et les « RtcB-like ». Malgré le fait que ces enzymes ont des rôles biologiques similaires dans la cellule, leurs mécanismes moléculaires sont très différents. Notre équipe a découvert chez un eucaryote marin la présence de trois gènes codant pour des homologues de ligases à ARN de type RtcB. Ceci est pour le moins inhabituel considérant que la plupart des espèces eucaryotes n’ont qu’un seul gène codant pour des ligases de ce type. Diplonema papillatum, l’organisme en question, est un eucaryote dont l’étude a gagné en popularité au courant des dernières années dû au mode d’expression particulier de son matériel génétique mitochondrial. Celui-ci est fragmenté en plusieurs morceaux appelés modules qui, durant le processus de maturation de l’ARN, sont joints ensemble via épissage en trans. Nous supposons que l’une des ligases de type RtcB présente chez D. papillatum, plus spécifiquement DpRTCB1, est un des acteurs principaux de ce phénomène d’épissage en trans. Nous pensons aussi que les deux autres RtcB présentes chez cet organisme, soit DpRTCB2 et DpRTCB3, ont chacune leur propre rôle dans la cellule. Nous avons donc modélisé la structure tertaire de ces protéines in silico donnant ainsi des indices quant à ce qui pourraient être requis comme cofacteurs par ces trois enzymes. Nous proposons aussi un système de classification des ligases de type RtcB en fonction de leurs rôles biologiques et de leurs variations au niveau des résidus composant le site actif de l’enzyme. Nous avons tenté de purifier des protéines de fusion DpRTCB pour de futurs essais enzymatiques afin de déterminer les rôles biologiques potentiels de ces enzymes. Toutefois, ces protéines formaient des corps d’inclusion rendant leur purification difficile. Ce faisant, nous démontrons les différentes techniques qui existent actuellement pour purifier des protéines à partir d’agrégats insolubles. Ce mémoire prédit les potentiels cofacteurs et substrats nécessaires pour de futurs essais biochimiques des ligases DpRTCB. Nous établissons aussi une base robuste pour un système de classification des ligases de type RtcB. Ce document prodigue entre autres des solutions de base aux chercheurs désireux de purifier des protéines qui forment des corps d’inclusion avant de considérer passer à des méthodes de purification plus laborieuses et coûteuses. / Ribonucleic acids (RNA) undergo several post-transcriptional modifications before fulfilling their role in the cell. One of the actors responsible for these modifications are RNA ligases. There are two main families of RNA ligases, namely “ATP-grasp” and “RtcB-like”. Despite the fact that these enzymes have similar biological roles in the cell, their molecular mechanisms are very different. Our team has discovered in a marine eukaryote the presence of three genes encoding RtcB RNA ligase homologs. This is unusual considering that eukaryotes generally have only one gene encoding for an homolog of this ligase. Diplonema papillatum, the organism in question, is a eukaryote that has grown in popularity in recent years due to the particular mode of expression of its mitochondrial genetic material. Its genome is fragmented into several pieces called modules which, during the RNA maturation process, these modules undergo ligation via trans-splicing. We posit that one of the RtcB-type ligases present in D. papillatum, more specifically DpRTCB1, is a major player in this trans-splicing phenomenon. We also believe that the other two RtcB ligases present in this organism, DpRTCB2 and DpRTCB3, each have its own role in the cell. We therefore established in silico models for these proteins which could hint at the cofactors required by these three enzymes. We also propose a classification system for RtcB-type ligases according to their biological roles and variations in known active site residues. We attempted to purify DpRTCB fusion proteins for future enzymatic assays in order to get a better understanding in the biological role of these enzymes. These proteins, however, formed inclusion bodies making their purification difficult. Thus, we demonstrate various techniques that currently exist to attempt to purify proteins from insoluble aggregates. This Master’s thesis attempts to predict the potential cofactors and substrates necessary for future biochemical assays of DpRTCB enzymes. We also establish a robust foundation for a classification system of RtcB-type ligases. Among other things, this document provides basic solutions to researchers wishing to purify proteins that form inclusion bodies before considering switching to more laborious and expensive purification methods.

Page generated in 0.0474 seconds