• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Étude de la sensibilité à la corrosion sous contrainte de laitons biphasés : Conception d'un test accéléré d'évaluation de la sensibilité à la corrosion sous contrainte de composants de robinetterie gaz / Study of the susceptibility of two-phase brass to stress corrosion cracking : Design of an accelerated test to evaluate the susceptibility of gas transfer valves to stress corrosion cracking

Berne, Clément 19 November 2015 (has links)
Les ruptures imprévisibles de composants de robinetterie gaz constituent une problématique majeure de la sûreté du réseau de GrDF. Actuellement, la prévention des risques de rupture repose sur la réalisation de tests accélérés de sensibilité à la corrosion sous contrainte (CSC), préalablement à la mise en service des composants de robinetterie en laiton. Il s'agit d'éviter des accidents, au caractère potentiellement très dommageable, du fait de l'inflammabilité des gaz transportés. Or, dans certains cas, des endommagements prématurés de composants de robinetterie sont toujours constatés. Les limites du test de sensibilité actuel SROB 100 NF ont été démontrées par le CETIM ; définir un nouveau test accéléré, plus représentatif des endommagements constatés en service sur les éléments de robinetterie, et conduisant à des résultats reproductibles est donc crucial. Ce test devra être facilement adaptable sur site industriel afin de permettre aux industriels fabricants de valider la conformité des lots de pièces vis-à-vis de leur sensibilité à la CSC. Ainsi, les travaux de thèse reposent sur une démarche intégrant d'une part, la compréhension des mécanismes de CSC affectant les pièces en laiton α,β’ CuZn40Pb2 (CW617N) et d'autre part, la capacité à reproduire les endommagements observés en service, de manière accélérée. Grâce aux résultats obtenus, l'étude permet d’envisager l'industrialisation d’un nouveau test en milieu nitrate, à pH 11 sous polarisation anodique. La reproductibilité de l'endommagement obtenu et sa représentativité vis-à-vis des dommages observés en service comme le caractère discriminant du test vis-à-vis des états métallurgiques les moins résistants ont été démontrés. / The unpredictability of ruptures which occur in the gas transfer valves of the French gas network (GrDF), though sporadic, is a major security issue. Currently, the risk prevention is performed through accelerated tests (SROB100 NF) on gas transfer valves to determine their susceptibility to stress corrosion cracking (SCC). The goal behind this test protocol is to avoid serious accidents due to the flammability of the gas being transported. However, in some cases, premature ruptures of gas transfer valves are still being recorded. The limits of the current test protocol SROB 100 NF have been highlighted by the CETIM and therefore, to define a new accelerated test, more reproducible and representative of the damage observed during the service life of the pipework element is crucial. This new protocol has to be easily integrated into the current industrial set-up to allow for quick confirmation of the conformity of the pieces with regards to their susceptibility to SCC. To this end, the current study had a two-pronged approach. First, to understand the SCC mechanisms affecting brass specimen - α,β’ brass CuZn40Pb2 (CW617N); second, to reproduce the damage observed in real time, in an accelerated manner. In conclusion, the results of the study have paved the way for the industrialization of a new test in nitrate solution, at pH 11 under constant anodic polarization. This new test has proven to be reproducible and produces damage characteristics similar to those observed during service life. This study has also brought into evidence the discriminating characteristic of the test, allowing the identification of the metallurgical states of the alloy that are the least resistant to SCC.
2

Microstructural Evolution In As-cast Alloys during Plastic Deformation

Basirat, Mitra January 2013 (has links)
The effect of deformation on microstructural changes in metals and alloys is the subject of considerable practical interest. The ultimate goal is to control, improve and optimize the microstructure and texture of the finished products produced by metal forming operations. The development in the subject field is remarkable but a more in-depth study could lead us to the better understanding of the phenomena.   In the present work microstructural evolution during the plastic deformation of as-cast pure metals and alloys is studied. An experimental method was developed to study the material behavior under the hot compression testing. This method was applied on the as-cast structure of copper, bearing steel, Incoloy 825 and β brass at different temperatures and strain rates. The temperature of the samples was measured during and after the deformation process. The microstructure of the samples was examined by optical microscopy and scanning electron microscopy (SEM). The microstructural evolution during deformation process was investigated by transmission electron microscopy (TEM) and electron backscatter diffraction (EBSD). The samples were subsequently subjected to electron microprobe analysis (EMPA) to investigate the effect of the deformation on the microsegregation of Mo, Cr, Si, and Mn.   It was observed that the temperature of the samples deformed at strain rates of 5 and 10 s-1 increases abruptly after the deformation stops. However, compression test at the lower strain rates of 1 and 0.5 s-1 revealed that a constant temperature was maintained in the early stage of deformation, followed by an increase until the maximum temperature was obtained. This temperature behavior can be explained by the microstructural evolution during the deformation process. Micrograph analysis revealed the formation of deformation bands (DBs) in highly strained regions. The DBs are highly effective sites for recrystallization. The interdendritic regions are suitable sites for the formation of DBs due to the high internal energy in these regions. EMPA indicated a tendency towards uphill diffusion of Mo in the DBs with increasing strain. The effect of strain on the dissolution of carbides in the band structure of bearing steel was investigated by measuring the volume fraction of carbides inside the band structure at different strain levels. The results indicate that carbide dissolution is influenced by strain.    The microstructural evolution inside the DBs was studied as a function of several properties: temperature, internal energy, and microsegregation. Compression of β brass revealed that twinning is the most prominent feature in the microstructure. EBSD analysis and energy calculations demonstrated that the twinning is not due to a martensitic process but rather the order/disorder transition during the deformation process. The effect of heat treatment at Tc (650°C) prior to deformation on the microstructure of β brass was also investigated, which revealed a relationship between twin formation and the anti-phase domain boundaries / <p>QC 20131104</p>

Page generated in 0.0604 seconds