• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Kinetics of Atmospheric Reactions of Biogenic Volatile Organic Compounds: Measurement of the Rate Constant ofThujone + Cl· at 296 K and Calculation ofthe Equilibrium Constant for the HO2CH2CH2O2· H2O Complex

Killian, Marie Coy 19 April 2013 (has links) (PDF)
Biogenic volatile organic compounds (VOCs) react with Cl and OH radicals and the resulting radicals combine with oxygen to form peroxy radicals RO2. Organic peroxy radicals can then react with NO to form NO2, a precursor of tropospheric ozone. The work presented here explored the initial reaction between Cl and thujone, a VOC emitted by Great Basin sagebrush. The rate constant for the reaction of thujone + Cl at 296 K was measured with the method of relative rates with FTIR for detection of reactants. LEDs were used to photolyze Cl2 to generate Cl in the reaction cell. Thujone was also photolyzed by the LEDs and therefore the relative rates model was revised to account for this photolysis. With toluene as the reference compound, the rate constant for thujone + Cl at 296 K is 2.62 ± 1.90 × 10-12 molecules-1 s-1, giving an atmospheric lifetime of 0.5--2.6 minutes for thujone. Cline et al. showed that the rate of the self-reaction of HO2CH2CH2O2 (β-HEP) increases in the presence of water vapor. This enhancement has a strong temperature dependence with a greater enhancement observed at colder temperatures. The observed rate enhancement has been attributed to the formation of a β-HEP--H2O complex. In this work, the equilibrium constant for the formation of the β-HEP--H2O complex was calculated by ab initio calculations. Given the energy available at room temperature, the complex will populate three local minimum geometries and β-HEP will populate two local minimum geometries. The partition function for each of these geometries was calculated and used to calculate the equilibrium constant for complex formation as a function of temperature. Based on these computational results, the observed temperature dependence for the rate enhancement can be attributed to the strong temperature dependence for the rate constant of the reaction of β-HEP--H2O + β-HEP rather than the temperature dependence of complex formation.

Page generated in 0.0204 seconds