Spelling suggestions: "subject:"1interaction"" "subject:"3dinteraction""
1 |
SOLUTION AND SOLID STATE INTERACTIONS BETWEEN IONIC π-SYSTEMSChen, Jing 01 January 2006 (has links)
Although attractive interactions between π systems (π-π interaction) have been known for many years, understanding of its origin is still incomplete. Quantitative measuring of π-stacking is challenging due to the weak nature of the π-π interaction. This dissertation aims at elucidating a quantitative conformational analysis by NMR ring current anisotropy of an organic compound capable of intramolecular π-stacking in solution and studying charge effects on the stacking of π-systems. This dissertation offers four contributions to the area. (1) A general approach to four-state, conformational analysis based on the magnetic anisotropy of molecules undergoing fast dynamic exchange is described. (2) Study unveiled the importance of charges in the conformation of a dication in the solution. (3) Novel aromatic salt pairs of triangulene derivatives with the delocalized cation-anion interaction were synthesized and studied. (4) Study unveiled ionic π-systems preferred face-to-face stacking due to strong cation-π and anion-cation attractions.
A general protocol for the application of magnetic anisotropy to quantitative multi-state conformational analysis of molecules undergoing fast conformational exchange was suggested in the current study. The reliability of this method of conformational analysis was checked by the mass balance. VT-NMR was also conducted to study the enthalpic parameters. This technique can be further used to study canonical interactions such as ion pairing, hydrogen boning, and molecular recognition.
In the current study, dependence of the probe conformations on the dispersive interactions at the aromatic edges between solvent and probes was tested by conformational distributions of the fluorinated derivatives (2b and 2c) of the probe molecule (1a). Solution and solid studies of these molecules put the previous conclusion drawn by the Cammers group in question. Current studies show that the dispersive interaction at the aromatic edge could not be the predominant force on the conformational changes in the probe molecule 1a during the fluoroalkanol perturbation. This study indicated that charges might be important in the formation of the folding conformations in the solution and solid state of 1a, 2b, and 2c. A contribution of this thesis was to prepare and study a conformational model that lacked charges. The previous molecules were charged.
The solid-state structures of pyridinium-derived aromatic rings from the CSD (Cambridge Structural Database) were studied to investigate the π-π interaction between cationic π-systems in solid state. Novel aromatic salt pairs of triangulene derivatives with the delocalized cation-anion interaction were synthesized to study the π-π interaction between two aromatic rings that carried opposite charges. This study showed that the interaction between ionic π-systems can be enhanced by cation-π and anion-cation attractions. The stackings of these π-systems introduce more overlap, closer packing and stronger atomic contact than that of the solid states of comparable neutral species. Cation-π and anion-cation attractions are synergistic in aromatic salts.
|
2 |
Studies on π-interactions in liquid phase separations / 液相分離におけるπ相互作用に関する研究Kanao, Eisuke 27 July 2020 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第22701号 / 工博第4748号 / 新制||工||1742(附属図書館) / 京都大学大学院工学研究科材料化学専攻 / (主査)教授 大塚 浩二, 教授 松原 誠二郎, 教授 秋吉 一成 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
|
3 |
Syntéza a studium vlastností derivátů tetrathiofulvalenu / The tetrathiofulvalene derivatives: Their synthesis and propertiesNejedlý, Jindřich January 2012 (has links)
The goal of the diploma thesis was to prepare a spectrum of electron-rich macrocyclic derivatives of tetrathiafulvalene (TTF), which should serve as electron donors in interactions with electron-deficient acceptor molecules. A two-step synthesis was used for their preparation. First, a non-cyclic three-segment precursor was prepared by a reaction of a thiolate TTF construction block with a bis(bromomethyl)aromate. Then, a reaction of this precursor with another molecule of bis(bromomethyl)derivative closed the macrocycle. The latter reaction produced mainly [2+2] macrocycles containing two TTF and two aromatic units. In most cases, larger [4+4] macrocycles were also isolated from the reaction mixture. Besides thiolate TTF unit two other thiolate units, one with extended TTF core and other with smaller trithiafulvene ring, were used analogically in synthesis. By a combination of three thiolate blocks and five bis(bromomethyl)aromates 11 three-segment components were prepared and these were converted to 11 structural types of macrocycles with [2+2] and 7 macrocycles with [4+4] stoichiometry. The resulting macrocycles were characterized by 1 H a 13 C NMR spectroscopy and analyzed by a gel permeation chromatography. Their structures were also confirmed by high-resolution mass spectroscopy. Interaction...
|
4 |
Découverte et application de nouveaux motifs d'association propres à l'hexaphénylbenzène et à ses dérivésGagnon, Eric 11 1900 (has links)
Les propriétés des matériaux moléculaires proviennent à la fois de la structure des composantes individuelles et de la façon dont elles s’associent. Ce dernier aspect reste difficile à contrôler, malgré de grandes avancées en science des matériaux. Pour mieux comprendre la relation structure-propriétés, nous avons entrepris une étude systématique de l'hexaphénylbenzène et de ses dérivés, qui offrent une charpente symétrique et rigide.
En premier lieu, nous avons attaché six groupements diaminotriazinyles sur l’hexaphénylbenzène afin de produire des réseaux tridimensionnels hautement poreux maintenus par des ponts hydrogène. En modifiant systématiquement le coeur moléculaire, nous avons excisé près du tiers de la molécule-mère, générant des réseaux supramoléculaires dont la porosité s’est élevée graduellement jusqu’à 75%, équivalant ainsi le record pour ce type de matériaux.
Ensuite, nous avons étudié le comportement de l’hexakis(4-nitrophényl)benzène. Dans les structures cristallines obtenues, des interactions non-covalentes entre groupements nitro démontrent leur potentiel en chimie supramoléculaire. Le coeur moléculaire ne joue qu’un rôle secondaire dans l’empilement des molécules : seules quelques interactions C-H•••π impliquant le cycle aromatique central de l’hexaphénylbenzène sont évidentes.
Cette dernière observation nous a poussés à étudier le comportement à l’état cristallin de l’hexaphénylbenzène et ses dérivés. En scrutant attentivement neuf structures cristallines de ces composés, nous avons décerné la présence récurrente d’interactions C-H•••π impliquant le cycle aromatique central. Cette association caractéristique a été exploitée pour créer des réseaux supramoléculaires maintenus par des interactions C-H•••π sélectives entre un groupement éthynyle et le cycle aromatique central de l’hexaphénylbenzène.
Finalement, nous avons joint le côté sombre de l’ingénierie cristalline en utilisant nos connaissances dans le but d’empêcher la formation d’interactions directionnelles. En protégeant le cycle aromatique central de l’hexaphénylbenzène à l’aide de groupements alkyles, les interactions C-H•••π ont été pratiquement éliminées. Ces résultats offrent la possibilité de créer de nouveaux matériaux amorphes.
Dans ces études, focalisées sur le système hexaphénylbenzène, nous avons mis en relief des phénomènes qui sont obscurcis dans d'autres familles de molécules. De plus, ce système a grandement facilité l’utilisation d’une approche méthodique pour explorer la relation structure-propriétés. Nos travaux nous ont amenés à des conclusions de valeur universelle en science des matériaux moléculaires. / The properties of molecular materials depend on the identity of individual components and on their organization. Unfortunately, it remains difficult to control molecular organization, despite advances in materials science. To better understand the relationship between molecular structure and collective properties, we undertook a systematic study of hexaphenylbenzene and its derivatives, which possess a rigid symmetric framework.
Our first study focused on using hydrogen bonds to control self-assembly in the solid state. By installing six diaminotriazinyl groups on a hexaphenylbenzene core, we predictably obtained highly porous three-dimensional hydrogen-bonded networks. Through systematic structural modifications of the molecular core, we excised nearly a third of the parent molecule, and the porosity of the networks gradually increased, matching the record of 75% previously obtained for this type of material.
We then turned to weaker interactions to control organization, as revealed by the packing of hexakis(4-nitrophenyl)benzene. In the crystal structures analyzed, non-covalent interactions between nitro groups were observed, demonstrating their potential in supramolecular chemistry. Careful examination of the structures showed that the hexaphenylbenzene moieties play only a secondary role in determining the overall packing; however, C-H•••π interactions involving the central aromatic ring of hexaphenylbenzene were also observed.
To further document this unexpected behavior, we analyzed nine crystal structures of hexaphenylbenzene and derivatives, which showed that a C-H•••π recognition pattern involving the central aromatic ring occurs consistently throughout the series. This motif was used to prepare supramolecular networks based exclusively on selective and directional C-H•••π interactions involving ethynyl groups and the central aromatic ring of hexaphenylbenzene.
Finally, we joined the dark side of crystal engineering by using our knowledge of supramolecular chemistry to prevent the formation of directional interactions. By installing alkyl groups near the central aromatic ring of hexaphenylbenzene, C-H•••π interactions were practically eliminated. These results were then used to devise new amorphous materials.
The hexaphenylbenzene system permitted a methodical analysis of structure-property relationships in molecular materials. This particular system exposed phenomena normally obscured in other families of molecules, and our analysis of its behavior has yielded conclusions of universal value in materials science.
|
5 |
Découverte et application de nouveaux motifs d'association propres à l'hexaphénylbenzène et à ses dérivésGagnon, Eric 11 1900 (has links)
Les propriétés des matériaux moléculaires proviennent à la fois de la structure des composantes individuelles et de la façon dont elles s’associent. Ce dernier aspect reste difficile à contrôler, malgré de grandes avancées en science des matériaux. Pour mieux comprendre la relation structure-propriétés, nous avons entrepris une étude systématique de l'hexaphénylbenzène et de ses dérivés, qui offrent une charpente symétrique et rigide.
En premier lieu, nous avons attaché six groupements diaminotriazinyles sur l’hexaphénylbenzène afin de produire des réseaux tridimensionnels hautement poreux maintenus par des ponts hydrogène. En modifiant systématiquement le coeur moléculaire, nous avons excisé près du tiers de la molécule-mère, générant des réseaux supramoléculaires dont la porosité s’est élevée graduellement jusqu’à 75%, équivalant ainsi le record pour ce type de matériaux.
Ensuite, nous avons étudié le comportement de l’hexakis(4-nitrophényl)benzène. Dans les structures cristallines obtenues, des interactions non-covalentes entre groupements nitro démontrent leur potentiel en chimie supramoléculaire. Le coeur moléculaire ne joue qu’un rôle secondaire dans l’empilement des molécules : seules quelques interactions C-H•••π impliquant le cycle aromatique central de l’hexaphénylbenzène sont évidentes.
Cette dernière observation nous a poussés à étudier le comportement à l’état cristallin de l’hexaphénylbenzène et ses dérivés. En scrutant attentivement neuf structures cristallines de ces composés, nous avons décerné la présence récurrente d’interactions C-H•••π impliquant le cycle aromatique central. Cette association caractéristique a été exploitée pour créer des réseaux supramoléculaires maintenus par des interactions C-H•••π sélectives entre un groupement éthynyle et le cycle aromatique central de l’hexaphénylbenzène.
Finalement, nous avons joint le côté sombre de l’ingénierie cristalline en utilisant nos connaissances dans le but d’empêcher la formation d’interactions directionnelles. En protégeant le cycle aromatique central de l’hexaphénylbenzène à l’aide de groupements alkyles, les interactions C-H•••π ont été pratiquement éliminées. Ces résultats offrent la possibilité de créer de nouveaux matériaux amorphes.
Dans ces études, focalisées sur le système hexaphénylbenzène, nous avons mis en relief des phénomènes qui sont obscurcis dans d'autres familles de molécules. De plus, ce système a grandement facilité l’utilisation d’une approche méthodique pour explorer la relation structure-propriétés. Nos travaux nous ont amenés à des conclusions de valeur universelle en science des matériaux moléculaires. / The properties of molecular materials depend on the identity of individual components and on their organization. Unfortunately, it remains difficult to control molecular organization, despite advances in materials science. To better understand the relationship between molecular structure and collective properties, we undertook a systematic study of hexaphenylbenzene and its derivatives, which possess a rigid symmetric framework.
Our first study focused on using hydrogen bonds to control self-assembly in the solid state. By installing six diaminotriazinyl groups on a hexaphenylbenzene core, we predictably obtained highly porous three-dimensional hydrogen-bonded networks. Through systematic structural modifications of the molecular core, we excised nearly a third of the parent molecule, and the porosity of the networks gradually increased, matching the record of 75% previously obtained for this type of material.
We then turned to weaker interactions to control organization, as revealed by the packing of hexakis(4-nitrophenyl)benzene. In the crystal structures analyzed, non-covalent interactions between nitro groups were observed, demonstrating their potential in supramolecular chemistry. Careful examination of the structures showed that the hexaphenylbenzene moieties play only a secondary role in determining the overall packing; however, C-H•••π interactions involving the central aromatic ring of hexaphenylbenzene were also observed.
To further document this unexpected behavior, we analyzed nine crystal structures of hexaphenylbenzene and derivatives, which showed that a C-H•••π recognition pattern involving the central aromatic ring occurs consistently throughout the series. This motif was used to prepare supramolecular networks based exclusively on selective and directional C-H•••π interactions involving ethynyl groups and the central aromatic ring of hexaphenylbenzene.
Finally, we joined the dark side of crystal engineering by using our knowledge of supramolecular chemistry to prevent the formation of directional interactions. By installing alkyl groups near the central aromatic ring of hexaphenylbenzene, C-H•••π interactions were practically eliminated. These results were then used to devise new amorphous materials.
The hexaphenylbenzene system permitted a methodical analysis of structure-property relationships in molecular materials. This particular system exposed phenomena normally obscured in other families of molecules, and our analysis of its behavior has yielded conclusions of universal value in materials science.
|
Page generated in 0.1047 seconds