• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Sigma-1 Receptors Modulate NMDA Receptor Function

Sokolovski, Alexandra 14 January 2013 (has links)
The sigma-1 receptor (σ-1R) is an endoplasmic reticulum (ER) protein that modulates a number of ion channels. It is hypothesized that σ-1Rs activated with agonist translocate to the plasma membrane. The σ-1R potentiates N-methyl-D-aspartate Receptors (NMDARs), important constituents of synaptic plasticity. NMDARs are anchored in the plasma membrane by Postsynaptic Density Protein-95 (PSD-95). The mechanism behind σ-1R modulation of NMDARs is not known. The results of my investigation confirm that σ-1Rs localize extrasomatically. Following σ-1R activation, σ-1R localization to dendrites and postsynaptic densities (PSDs) is upregulated. Unpublished work from our lab has shown that σ-1Rs associate with PSD-95 and NMDARs. Furthermore, immunocytochemistry (ICC) showed σ-1R colocalization with PSD-95 and NMDAR subunits. After σ-1R activation there was significantly increased colocalization between σ-1R, PSD-95, and GluN2B. Overall, this study may have provided insight into the molecular mechanism behind σ-1R modulation of NMDARs, which could have implications in the understanding of synaptic plasticity.
2

Sigma-1 Receptors Modulate NMDA Receptor Function

Sokolovski, Alexandra 14 January 2013 (has links)
The sigma-1 receptor (σ-1R) is an endoplasmic reticulum (ER) protein that modulates a number of ion channels. It is hypothesized that σ-1Rs activated with agonist translocate to the plasma membrane. The σ-1R potentiates N-methyl-D-aspartate Receptors (NMDARs), important constituents of synaptic plasticity. NMDARs are anchored in the plasma membrane by Postsynaptic Density Protein-95 (PSD-95). The mechanism behind σ-1R modulation of NMDARs is not known. The results of my investigation confirm that σ-1Rs localize extrasomatically. Following σ-1R activation, σ-1R localization to dendrites and postsynaptic densities (PSDs) is upregulated. Unpublished work from our lab has shown that σ-1Rs associate with PSD-95 and NMDARs. Furthermore, immunocytochemistry (ICC) showed σ-1R colocalization with PSD-95 and NMDAR subunits. After σ-1R activation there was significantly increased colocalization between σ-1R, PSD-95, and GluN2B. Overall, this study may have provided insight into the molecular mechanism behind σ-1R modulation of NMDARs, which could have implications in the understanding of synaptic plasticity.
3

Sigma-1 Receptors Modulate NMDA Receptor Function

Sokolovski, Alexandra January 2013 (has links)
The sigma-1 receptor (σ-1R) is an endoplasmic reticulum (ER) protein that modulates a number of ion channels. It is hypothesized that σ-1Rs activated with agonist translocate to the plasma membrane. The σ-1R potentiates N-methyl-D-aspartate Receptors (NMDARs), important constituents of synaptic plasticity. NMDARs are anchored in the plasma membrane by Postsynaptic Density Protein-95 (PSD-95). The mechanism behind σ-1R modulation of NMDARs is not known. The results of my investigation confirm that σ-1Rs localize extrasomatically. Following σ-1R activation, σ-1R localization to dendrites and postsynaptic densities (PSDs) is upregulated. Unpublished work from our lab has shown that σ-1Rs associate with PSD-95 and NMDARs. Furthermore, immunocytochemistry (ICC) showed σ-1R colocalization with PSD-95 and NMDAR subunits. After σ-1R activation there was significantly increased colocalization between σ-1R, PSD-95, and GluN2B. Overall, this study may have provided insight into the molecular mechanism behind σ-1R modulation of NMDARs, which could have implications in the understanding of synaptic plasticity.

Page generated in 0.0445 seconds