• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • 1
  • 1
  • Tagged with
  • 20
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Spatial organization of sodium calcium exchanger and caveolin-3 in developing mammalian ventricular cardiomyocytes

Hung, Hsiao-Yu 11 1900 (has links)
In adult cardiomyocytes, the established mechanism of excitation-contraction coupling is calcium-induced calcium release (CICR) mediated by L-type Ca2+ channels (Cav1.2). Briefly, membrane depolarization opens voltage-gated Cav1.2 to allow for the influx of extracellular Ca2+ into the cytosol. This small sarcolemmal (SL) Ca2+ influx is necessary for triggering a larger release of Ca2+ from the intracellular Ca2+ storage site, the sarcoplasmic reticulum (SR), through the SR Ca2+ release channel also known as the ryanodine receptor (RyR). RyR-mediated release of SR Ca2+ effectively raises the cytosolic free Ca2+ concentration, allowing for Ca2+ binding to troponin C on the troponin-tropomysin complex, leading to cross-bridge formation and cell contraction. However, previous functional data suggests an additional CICR modality involving reverse mode Na+-Ca2+ exchanger (NCX) activity also exists in neonate cardiomyocytes. To further our understanding of how CICR changes occur during development, we investigated the spatial arrangement of caveolin-3 (cav-3), the principle structural protein of small membrane invaginations named caveolae, and NCX in developing rabbit ventricular myocytes. Using traditional as well as novel image processing and analysis techniques, both qualitative and quantitative findings firmly establish the highly robust and organized nature of NCX and cav-3 distributions during development. Specifically, our results show that NCX and cav-3 are distributed on the peripheral membrane as discrete clusters and are not highly colocalized throughout development. 3D distance analysis revealed that NCX and cav-3 clusters are organized with a distinct longitudinal and transverse periodicity of 1-1.5 μm and that NCX and cav-3 cluster have a pronounced tendency to be mutually exclusive on the cell periphery. Although these findings do not support the original hypothesis that caveolae is the structuring element for a restricted microdomain facilitating NCX-CICR, our results cannot rule out the existence of such microdomain organized by other anchoring proteins. The developmentally stable distributions of NCX and cav-3 imply that the observed developmental CICR changes are achieved by the spatial re-organization of other protein partners of NCX or non-spatial modifications. In addition, the newly developed image processing and analysis techniques can have wide applicability to the investigations on the spatial distribution of other proteins and cellular structures.
2

Spatial organization of sodium calcium exchanger and caveolin-3 in developing mammalian ventricular cardiomyocytes

Hung, Hsiao-Yu 11 1900 (has links)
In adult cardiomyocytes, the established mechanism of excitation-contraction coupling is calcium-induced calcium release (CICR) mediated by L-type Ca2+ channels (Cav1.2). Briefly, membrane depolarization opens voltage-gated Cav1.2 to allow for the influx of extracellular Ca2+ into the cytosol. This small sarcolemmal (SL) Ca2+ influx is necessary for triggering a larger release of Ca2+ from the intracellular Ca2+ storage site, the sarcoplasmic reticulum (SR), through the SR Ca2+ release channel also known as the ryanodine receptor (RyR). RyR-mediated release of SR Ca2+ effectively raises the cytosolic free Ca2+ concentration, allowing for Ca2+ binding to troponin C on the troponin-tropomysin complex, leading to cross-bridge formation and cell contraction. However, previous functional data suggests an additional CICR modality involving reverse mode Na+-Ca2+ exchanger (NCX) activity also exists in neonate cardiomyocytes. To further our understanding of how CICR changes occur during development, we investigated the spatial arrangement of caveolin-3 (cav-3), the principle structural protein of small membrane invaginations named caveolae, and NCX in developing rabbit ventricular myocytes. Using traditional as well as novel image processing and analysis techniques, both qualitative and quantitative findings firmly establish the highly robust and organized nature of NCX and cav-3 distributions during development. Specifically, our results show that NCX and cav-3 are distributed on the peripheral membrane as discrete clusters and are not highly colocalized throughout development. 3D distance analysis revealed that NCX and cav-3 clusters are organized with a distinct longitudinal and transverse periodicity of 1-1.5 μm and that NCX and cav-3 cluster have a pronounced tendency to be mutually exclusive on the cell periphery. Although these findings do not support the original hypothesis that caveolae is the structuring element for a restricted microdomain facilitating NCX-CICR, our results cannot rule out the existence of such microdomain organized by other anchoring proteins. The developmentally stable distributions of NCX and cav-3 imply that the observed developmental CICR changes are achieved by the spatial re-organization of other protein partners of NCX or non-spatial modifications. In addition, the newly developed image processing and analysis techniques can have wide applicability to the investigations on the spatial distribution of other proteins and cellular structures.
3

Spatial organization of sodium calcium exchanger and caveolin-3 in developing mammalian ventricular cardiomyocytes

Hung, Hsiao-Yu 11 1900 (has links)
In adult cardiomyocytes, the established mechanism of excitation-contraction coupling is calcium-induced calcium release (CICR) mediated by L-type Ca2+ channels (Cav1.2). Briefly, membrane depolarization opens voltage-gated Cav1.2 to allow for the influx of extracellular Ca2+ into the cytosol. This small sarcolemmal (SL) Ca2+ influx is necessary for triggering a larger release of Ca2+ from the intracellular Ca2+ storage site, the sarcoplasmic reticulum (SR), through the SR Ca2+ release channel also known as the ryanodine receptor (RyR). RyR-mediated release of SR Ca2+ effectively raises the cytosolic free Ca2+ concentration, allowing for Ca2+ binding to troponin C on the troponin-tropomysin complex, leading to cross-bridge formation and cell contraction. However, previous functional data suggests an additional CICR modality involving reverse mode Na+-Ca2+ exchanger (NCX) activity also exists in neonate cardiomyocytes. To further our understanding of how CICR changes occur during development, we investigated the spatial arrangement of caveolin-3 (cav-3), the principle structural protein of small membrane invaginations named caveolae, and NCX in developing rabbit ventricular myocytes. Using traditional as well as novel image processing and analysis techniques, both qualitative and quantitative findings firmly establish the highly robust and organized nature of NCX and cav-3 distributions during development. Specifically, our results show that NCX and cav-3 are distributed on the peripheral membrane as discrete clusters and are not highly colocalized throughout development. 3D distance analysis revealed that NCX and cav-3 clusters are organized with a distinct longitudinal and transverse periodicity of 1-1.5 μm and that NCX and cav-3 cluster have a pronounced tendency to be mutually exclusive on the cell periphery. Although these findings do not support the original hypothesis that caveolae is the structuring element for a restricted microdomain facilitating NCX-CICR, our results cannot rule out the existence of such microdomain organized by other anchoring proteins. The developmentally stable distributions of NCX and cav-3 imply that the observed developmental CICR changes are achieved by the spatial re-organization of other protein partners of NCX or non-spatial modifications. In addition, the newly developed image processing and analysis techniques can have wide applicability to the investigations on the spatial distribution of other proteins and cellular structures. / Medicine, Faculty of / Pathology and Laboratory Medicine, Department of / Graduate
4

Sigma-1 Receptors Modulate NMDA Receptor Function

Sokolovski, Alexandra 14 January 2013 (has links)
The sigma-1 receptor (σ-1R) is an endoplasmic reticulum (ER) protein that modulates a number of ion channels. It is hypothesized that σ-1Rs activated with agonist translocate to the plasma membrane. The σ-1R potentiates N-methyl-D-aspartate Receptors (NMDARs), important constituents of synaptic plasticity. NMDARs are anchored in the plasma membrane by Postsynaptic Density Protein-95 (PSD-95). The mechanism behind σ-1R modulation of NMDARs is not known. The results of my investigation confirm that σ-1Rs localize extrasomatically. Following σ-1R activation, σ-1R localization to dendrites and postsynaptic densities (PSDs) is upregulated. Unpublished work from our lab has shown that σ-1Rs associate with PSD-95 and NMDARs. Furthermore, immunocytochemistry (ICC) showed σ-1R colocalization with PSD-95 and NMDAR subunits. After σ-1R activation there was significantly increased colocalization between σ-1R, PSD-95, and GluN2B. Overall, this study may have provided insight into the molecular mechanism behind σ-1R modulation of NMDARs, which could have implications in the understanding of synaptic plasticity.
5

Sigma-1 Receptors Modulate NMDA Receptor Function

Sokolovski, Alexandra 14 January 2013 (has links)
The sigma-1 receptor (σ-1R) is an endoplasmic reticulum (ER) protein that modulates a number of ion channels. It is hypothesized that σ-1Rs activated with agonist translocate to the plasma membrane. The σ-1R potentiates N-methyl-D-aspartate Receptors (NMDARs), important constituents of synaptic plasticity. NMDARs are anchored in the plasma membrane by Postsynaptic Density Protein-95 (PSD-95). The mechanism behind σ-1R modulation of NMDARs is not known. The results of my investigation confirm that σ-1Rs localize extrasomatically. Following σ-1R activation, σ-1R localization to dendrites and postsynaptic densities (PSDs) is upregulated. Unpublished work from our lab has shown that σ-1Rs associate with PSD-95 and NMDARs. Furthermore, immunocytochemistry (ICC) showed σ-1R colocalization with PSD-95 and NMDAR subunits. After σ-1R activation there was significantly increased colocalization between σ-1R, PSD-95, and GluN2B. Overall, this study may have provided insight into the molecular mechanism behind σ-1R modulation of NMDARs, which could have implications in the understanding of synaptic plasticity.
6

Sigma-1 Receptors Modulate NMDA Receptor Function

Sokolovski, Alexandra January 2013 (has links)
The sigma-1 receptor (σ-1R) is an endoplasmic reticulum (ER) protein that modulates a number of ion channels. It is hypothesized that σ-1Rs activated with agonist translocate to the plasma membrane. The σ-1R potentiates N-methyl-D-aspartate Receptors (NMDARs), important constituents of synaptic plasticity. NMDARs are anchored in the plasma membrane by Postsynaptic Density Protein-95 (PSD-95). The mechanism behind σ-1R modulation of NMDARs is not known. The results of my investigation confirm that σ-1Rs localize extrasomatically. Following σ-1R activation, σ-1R localization to dendrites and postsynaptic densities (PSDs) is upregulated. Unpublished work from our lab has shown that σ-1Rs associate with PSD-95 and NMDARs. Furthermore, immunocytochemistry (ICC) showed σ-1R colocalization with PSD-95 and NMDAR subunits. After σ-1R activation there was significantly increased colocalization between σ-1R, PSD-95, and GluN2B. Overall, this study may have provided insight into the molecular mechanism behind σ-1R modulation of NMDARs, which could have implications in the understanding of synaptic plasticity.
7

Plasma membrane order; the role of cholesterol and links to actin filaments

Dinic, Jelena January 2011 (has links)
The connection between T cell activation, plasma membrane order and actin filament dynamics was the main focus of this study. Laurdan and di-4-ANEPPDHQ, membrane order sensing probes, were shown to report only on lipid packing rather than being influenced by the presence of membrane-inserted peptides justifying their use in membrane order studies. These dyes were used to follow plasma membrane order in live cells at 37°C. Disrupting actin filaments had a disordering effect while stabilizing actin filaments had an ordering effect on the plasma membrane, indicating there is a basal level of ordered domains in resting cells. Lowering PI(4,5)P2 levels decreased the proportion of ordered domains strongly suggesting that the connection of actin filaments to the plasma membrane is responsible for the maintaining the level of ordered membrane domains. Membrane blebs, which are detached from the underlying actin filaments, contained a low fraction of ordered domains. Aggregation of membrane components resulted in a higher proportion of ordered plasma membrane domains and an increase in cell peripheral actin polymerization. This strongly suggests that the attachment of actin filaments to the plasma membrane induces the formation of ordered domains. Limited cholesterol depletion with methyl-beta-cyclodextrin triggered peripheral actin polymerization. Cholesterol depleted cells showed an increase in plasma membrane order as a result of actin filament accumulation underneath the membrane. Moderate cholesterol depletion also induced membrane domain aggregation and activation of T cell signaling events. The T cell receptor (TCR) aggregation caused redistribution of domains resulting in TCR patches of higher order and the bulk membrane correspondingly depleted of ordered domains. This suggests the preexistence of small ordered membrane domains in resting T cells that aggregate upon cell activation. Increased actin polymerization at the TCR aggregation sites showed that actin polymerization is strongly correlated with the changes in the distribution of ordered domains. The distribution of the TCR in resting cells and its colocalization with actin filaments is cell cycle dependent. We conclude that actin filament attachment to the plasma membrane, which is regulated via PI(4,5)P2, plays a crucial role in the formation of ordered domains. / <p>At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 2: Submitted. Paper 4: Manuscript.</p>
8

Plasma membrane order; the role of cholesterol and links to actin filaments :

Dinic, Jelena January 2011 (has links)
The connection between T cell activation, plasma membrane order and actin filament dynamics was the main focus of this study. Laurdan and di-4-ANEPPDHQ, membrane order sensing probes, were shown to report only on lipid packing rather than being influenced by the presence of membrane-inserted peptides justifying their use in membrane order studies. These dyes were used to follow plasma membrane order in live cells at 37°C. Disrupting actin filaments had a disordering effect while stabilizing actin filaments had an ordering effect on the plasma membrane, indicating there is a basal level of ordered domains in resting cells. Lowering PI(4,5)P2 levels decreased the proportion of ordered domains strongly suggesting that the connection of actin filaments to the plasma membrane is responsible for the maintaining the level of ordered membrane domains. Membrane blebs, which are detached from the underlying actin filaments, contained a low fraction of ordered domains. Aggregation of membrane components resulted in a higher proportion of ordered plasma membrane domains and an increase in cell peripheral actin polymerization. This strongly suggests that the attachment of actin filaments to the plasma membrane induces the formation of ordered domains. Limited cholesterol depletion with methyl-beta-cyclodextrin triggered peripheral actin polymerization. Cholesterol depleted cells showed an increase in plasma membrane order as a result of actin filament accumulation underneath the membrane. Moderate cholesterol depletion also induced membrane domain aggregation and activation of T cell signaling events. The T cell receptor (TCR) aggregation caused redistribution of domains resulting in TCR patches of higher order and the bulk membrane correspondingly depleted of ordered domains. This suggests the preexistence of small ordered membrane domains in resting T cells that aggregate upon cell activation. Increased actin polymerization at the TCR aggregation sites showed that actin polymerization is strongly correlated with the changes in the distribution of ordered domains. The distribution of the TCR in resting cells and its colocalization with actin filaments is cell cycle dependent. We conclude that actin filament attachment to the plasma membrane, which is regulated via PI(4,5)P2, plays a crucial role in the formation of ordered domains. / At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 2: Submitted. Paper 4: Manuscript.
9

Empirical Optimal Transport on Discrete Spaces: Limit Theorems, Distributional Bounds and Applications

Tameling, Carla 11 December 2018 (has links)
No description available.
10

Proteomic profiling of vesicular organelles / Karaktärisering av proteom i vesikel organeller

Hassan, Hanna January 2017 (has links)
No description available.

Page generated in 0.0133 seconds