• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 314
  • 25
  • 20
  • 16
  • 16
  • 12
  • 11
  • 9
  • 3
  • 3
  • 1
  • Tagged with
  • 455
  • 238
  • 177
  • 129
  • 127
  • 127
  • 52
  • 51
  • 46
  • 46
  • 44
  • 44
  • 35
  • 35
  • 35
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A description of final year nursing students' ability to recognize abnormal vital signs recordings and clinical decision-making process

Leonard, Martha Maria January 2014 (has links)
Includes abstract. / Includes bibliographical references. / The aim of this study was to determine whether final year nursing students can recognize and respond to abnormal vital sign recordings, and to analyse their clinical decision-making processes.
2

Restoration of optical coherence tomography images using stochastic methods

Mezgebo, Biniyam Kahsay 12 January 2016 (has links)
Optical coherence tomography (OCT) is a rapidly growing imaging modality that produces high resolution three dimensional images that can be applied to different medical and industrial applications . Obtaining higher depth of imaging and higher imaging quality are important goals in OCT systems. One of the main factors that affects the penetration depth and imaging quality of OCT systems is the presence of noise. The depth-scan photocurrent of time domain (TD) OCT system is degraded by a class of correlated and signal dependent noise. The joint probability density function of the depth-scan photocurrent can be considered as Gaussian random process that is completely characterized by its second order statistics. Both the mean and the covariance functions of the depth-scan photocurrent are functions of the depth variant axial reflectance of the object. We present a stable and computationally efficient OCT image restoration technique to obtain the maximum likelihood estimates of the axial reflectance of the object and to estimate the electrical noise variance. / February 2016
3

Mixed Interface Problems of Thermoelastic Pseudo-Oscillations

Jentsch, L., Natroshvili, D., Sigua, I. 30 October 1998 (has links) (PDF)
Three-dimensional basic and mixed interface problems of the mathematical theory of thermoelastic pseudo-oscillations are considered for piecewise homogeneous anisotropic bodies. Applying the method of boundary potentials and the theory of pseudodifferential equations existence and uniqueness theorems of solutions are proved in the space of regular functions C^(k+ alpha) and in the Bessel-potential (H^(s)_(p)) and Besov (B^(s)_(p,q)) spaces. In addition to the classical regularity results for solutions to the basic interface problems, it is shown that in the mixed interface problems the displacement vector and the temperature are Hölder continuous with exponent 0<alpha<1/2.
4

Interaction between Thermoelastic and Scalar Oscillation Fields (general anisotropic case)

Jentsch, L., Natroshvili, D 30 October 1998 (has links) (PDF)
Three-dimensional mathematical problems of the interaction between thermoelastic and scalar oscillation fields are considered in a general anisotropic case. An elastic structure is assumed to be a bounded homogeneous anisortopic body occupying domain $\Omega^+\sub\R^3$ , where the thermoelastic field is defined, while in the physically anisotropic unbounded exterior domain $\Omega^-=\R^3\\ \overline{\Omega^+}$ there is defined the scalar field. These two fields satisfy the differential equations of steady state oscillations in the corresponding domains along with the transmission conditions of special type on the interface $\delta\Omega^{+-}$. Uniqueness and existence theorems, for the non-resonance case, are proved by the reduction of the original interface problems to equivalent systems of boundary pseudodifferential equations ($\Psi DEs$) . The invertibility of the corresponding matrix pseudodifferential operators ($\Psi DO$) in appropriate functional spaces is shown on the basis of generalized Sommerfeld-Kupradze type thermoradiation conditions for anisotropic bodies. In the resonance case, the co-kernels of the $\Psi DOs$ are analysed and the efficent conditions of solvability of the transmission problems are established.
5

Thermoelastic Oscillations of Anisotropic Bodies

Jentsch, L., Natroshvili, D. 30 October 1998 (has links) (PDF)
The generalized radiation conditions at infinity of Sommerfeld-Kupradze type are established in the theory of thermoelasticity of anisotropic bodies. Applying the potential method and the theory of pseudodifferential equations on manifolds the uniqueness and existence theorems of solutions to the basic three-dimensional exterior boundary value problems are proved and representation formulas of solutions by potential type integrals are obtained.
6

Three-dimensional mathematical Problems of thermoelasticity of anisotropic Bodies

Jentsch, Lothar, Natroshvili, David 30 October 1998 (has links) (PDF)
CHAPTER I. Basic Equations. Fundamental Matrices. Thermo-Radiation Conditions 1. Basic differential equations of thermoelasticity theory 2. Fundamental matrices 3. Thermo-radiating conditions. Somigliana type integral representations CHAPTER II. Formulation of Boundary Value and Interface Problems 4. Functional spaces 5. Formulation of basic and mixed BVPs 6. Formulation of crack type problems 7. Formulation of basic and mixed interface problems CHAPTER III. Uniqueness Theorems 8. Uniqueness theorems in pseudo-oscillation problems 9. Uniqueness theorems in steady state oscillation problems CHAPTER IV. Potentials and Boundary Integral Operators 10. Thermoelastic steady state oscillation potentials 11. Pseudo-oscillation potentials CHAPTER V. Regular Boundary Value and Interface Problems 12. Basic BVPs of pseudo-oscillations 13. Basic exterior BVPs of steady state oscillations 14. Basic interface problems of pseudo-oscillations 15. Basic interface problems of steady state oscillations CHAPTER VI. Mixed and Crack Type Problems 16. Basic mixed BVPs 17. Crack type problems 18. Mixed interface problems of steady state oscillations 19. Mixed interface problems of pseudo-oscillations
7

Partitionierung von Finite-Elemente-Netzen

Reichel, U. 30 October 1998 (has links) (PDF)
The realization of the finite element method on parallel computers is usually based on a domain decomposition approach. This paper is concerned with the problem of finding an optimal decomposition and an appropriate mapping of the subdomains to the processors. The quality of this partitioning is measured in several metrics but it is also expressed in the computing time for solving specific systems of finite element equations. The software environment is first described. In particular, the data structure and the accumulation algorithm are introduced. Then several partitioning algorithms are compared. Spectral bisection was used with different modifications including Kernighan-Lin refinement, post-processing techniques and terminal propagation. The final recommendations should give good decompositions for all finite element codes which are based on principles similar to ours. The paper is a shortened English version of Preprint SFB393/96-18 (Uwe Reichel: Partitionierung von Finite-Elemente-Netzen), SFB 393, TU Chemnitz-Zwickau, December 1996. To be selfcontained, some material of Preprint SPC95_5 (see below) is included. The paper appeared as Preprint SFB393/96-18a, SFB 393, TU Chemnitz-Zwickau, January 1997.
8

Grafik-Ausgabe vom Parallelrechner für 2D-Gebiete

Pester, M. 30 October 1998 (has links) (PDF)
The paper mainly describes the user interface of some graphical visualization tools for parallel finite element applications in 2D (layer problems, deformation problems, fluid dynamics). There are presented some examples of various methods to display the numerical results.
9

Grafik-Ausgabe vom Parallelrechner für 3D-Gebiete

Meyer, M. 30 October 1998 (has links) (PDF)
The paper describes a method for Visualization of computational results in parallel finite element applications for 3D problems. The visualization itself is done on a workstation using a post- processing tool based on GRAPE, which interacts with the parallel program to obtain data.
10

Parallel solution of finite element equation systems: efficient inter-processor communication

Apel, T., Haase, G., Meyer, A., Pester, M. 30 October 1998 (has links) (PDF)
This paper deals with the application of domain decomposition methods for the parallel solution of boundary value problems for partial differential equations over a domain $Omegabset R^d$, $d=2,3$. The attention is focused on the conception of efficient communication routines for the data exchange which is necessary for example in the preconditioned cg-algorithm for solving the resulting system of algebraic equations. The paper describes the data structure, different algorithms, and computational tests.

Page generated in 0.0393 seconds