Spelling suggestions: "subject:"MSC 35555"" "subject:"MSC 35655""
1 |
The Interface Crack Problem for Anisotropic BodiesNatroshvili, David, Zazashvili, Shota 30 October 1998 (has links) (PDF)
The two-dimensional interface crack problem is investigated for anisotropic bodies in the Comninou formulation. It is established that, as in the isotropic case, properly incorporating contact zones at the crack tips avoids contradictions connected with the oscillating asymptotic behaviour of physical and mechanical characteristics leading to the overlapping of material. Applying the special integral representation formulae for the displacement field the problem in question is reduced to the scalar singular integral equation with the index equal to -1. The analysis of this equation is given. The comparison with the results of previous authors shows that the integral equations corresponding to the interface crack problems in the anisotropic and isotropic cases are actually the same from the point of view of the theoretical and numerical analysis.
|
2 |
The Interface Crack Problem for Anisotropic BodiesNatroshvili, David, Zazashvili, Shota 30 October 1998 (has links)
The two-dimensional interface crack problem is investigated for anisotropic bodies in the Comninou formulation. It is established that, as in the isotropic case, properly incorporating contact zones at the crack tips avoids contradictions connected with the oscillating asymptotic behaviour of physical and mechanical characteristics leading to the overlapping of material. Applying the special integral representation formulae for the displacement field the problem in question is reduced to the scalar singular integral equation with the index equal to -1. The analysis of this equation is given. The comparison with the results of previous authors shows that the integral equations corresponding to the interface crack problems in the anisotropic and isotropic cases are actually the same from the point of view of the theoretical and numerical analysis.
|
3 |
Three-dimensional mathematical Problems of thermoelasticity of anisotropic BodiesJentsch, Lothar, Natroshvili, David 30 October 1998 (has links) (PDF)
CHAPTER I. Basic Equations. Fundamental Matrices. Thermo-Radiation Conditions
1. Basic differential equations of thermoelasticity theory
2. Fundamental matrices
3. Thermo-radiating conditions. Somigliana type integral representations
CHAPTER II. Formulation of Boundary Value and Interface Problems
4. Functional spaces
5. Formulation of basic and mixed BVPs
6. Formulation of crack type problems
7. Formulation of basic and mixed interface problems
CHAPTER III. Uniqueness Theorems
8. Uniqueness theorems in pseudo-oscillation problems
9. Uniqueness theorems in steady state oscillation problems
CHAPTER IV. Potentials and Boundary Integral Operators
10. Thermoelastic steady state oscillation potentials
11. Pseudo-oscillation potentials
CHAPTER V. Regular Boundary Value and Interface Problems
12. Basic BVPs of pseudo-oscillations
13. Basic exterior BVPs of steady state oscillations
14. Basic interface problems of pseudo-oscillations
15. Basic interface problems of steady state oscillations
CHAPTER VI. Mixed and Crack Type Problems
16. Basic mixed BVPs
17. Crack type problems
18. Mixed interface problems of steady state oscillations
19. Mixed interface problems of pseudo-oscillations
|
4 |
Three-dimensional mathematical Problems of thermoelasticity of anisotropic BodiesJentsch, Lothar, Natroshvili, David 30 October 1998 (has links)
CHAPTER I. Basic Equations. Fundamental Matrices. Thermo-Radiation Conditions
1. Basic differential equations of thermoelasticity theory
2. Fundamental matrices
3. Thermo-radiating conditions. Somigliana type integral representations
CHAPTER II. Formulation of Boundary Value and Interface Problems
4. Functional spaces
5. Formulation of basic and mixed BVPs
6. Formulation of crack type problems
7. Formulation of basic and mixed interface problems
CHAPTER III. Uniqueness Theorems
8. Uniqueness theorems in pseudo-oscillation problems
9. Uniqueness theorems in steady state oscillation problems
CHAPTER IV. Potentials and Boundary Integral Operators
10. Thermoelastic steady state oscillation potentials
11. Pseudo-oscillation potentials
CHAPTER V. Regular Boundary Value and Interface Problems
12. Basic BVPs of pseudo-oscillations
13. Basic exterior BVPs of steady state oscillations
14. Basic interface problems of pseudo-oscillations
15. Basic interface problems of steady state oscillations
CHAPTER VI. Mixed and Crack Type Problems
16. Basic mixed BVPs
17. Crack type problems
18. Mixed interface problems of steady state oscillations
19. Mixed interface problems of pseudo-oscillations
|
Page generated in 0.0325 seconds