• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 18
  • 5
  • Tagged with
  • 23
  • 23
  • 10
  • 9
  • 8
  • 8
  • 8
  • 7
  • 7
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Ultrastructure and hemodynamics of microaneurysms in retinal vein occlusion examined by an offset pinhole adaptive optics scanning light ophthalmoscope / offset pinhole 補償光学走査型光検眼鏡を用いた網膜静脈閉塞症における毛細血管瘤の微細構造及び血球動態解析

Kadomoto, Shin 23 March 2022 (has links)
京都大学 / 新制・課程博士 / 博士(医学) / 甲第23754号 / 医博第4800号 / 新制||医||1055(附属図書館) / 京都大学大学院医学研究科医学専攻 / (主査)教授 木村 剛, 教授 山下 潤, 教授 YOUSSEFIAN Shohab / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
22

東シナ海近辺上におげる雲粒核の特性観測とその役割に関する研究

石坂, 隆 03 1900 (has links)
科学研究費補助金 研究種目:基盤研究(C) 課題番号:17510006 研究代表者:石坂 隆 研究期間:2005-2006年度
23

Improved inspection and micrometrology of embedded structures in multi-layered ceramics : Development of optical coherence tomographic methods and tools

Su, Rong January 2014 (has links)
Roll-to-roll manufacturing of micro components based on advanced printing, structuring and lamination of ceramic tapes is rapidly progressing. This large-scale and cost-effective manufacturing process of ceramic micro devices is however prone to hide defects within the visually opaque tape stacks. To achieve a sustainable manufacturing with zero defects in the future, there is an urgent need for reliable inspection systems. The systems to be developed have to perform high-resolution in-process quality control at high speed. Optical coherence tomography (OCT) is a promising technology for detailed in-depth inspection and metrology. Combined with infrared screening of larger areas it can solve the inspection demands in the roll-to-roll ceramic tape processes. In this thesis state-of-art commercial and laboratory OCT systems, operating at the central wavelength of 1.3 µm and 1.7 µm respectively, are evaluated for detecting microchannels, metal prints, defects and delaminations embedded in alumina and zirconia ceramic layers at hundreds of micrometers beneath surfaces. The effect of surface roughness induced scattering and scattering by pores on the probing radiation, is analyzed by experimentally captured and theoretically simulated OCT images of the ceramic samples, while varying surface roughnesses and operating wavelengths. By extending the Monte Carlo simulations of the OCT response to the mid-infrared the optimal operating wavelength is found to be 4 µm for alumina and 2 µm for zirconia. At these wavelengths we predict a sufficient probing depth of about 1 mm and we demonstrate and discuss the effect of rough surfaces on the detectability of embedded boundaries. For high-precision measurement a new and automated 3D image processing algorithm for analysis of volumetric OCT data is developed. We show its capability by measuring the geometric dimensions of embedded structures in ceramic layers, extracting features with irregular shapes and detecting geometric deformations. The method demonstrates its suitability for industrial applications by rapid inspection of manufactured samples with high accuracy and robustness. The new inspection methods we demonstrate are finally analyzed in the context of measurement uncertainty, both in the axial and lateral cases, and reveal that scattering in the sample indeed affects the lateral measurement uncertainty. Two types of image artefacts are found to be present in OCT images due to multiple reflections between neighboring boundaries and inhomogeneity of refractive index. A wavefront aberration is found in the OCT system with a scanning scheme of two galvo mirrors, and it can be corrected using our image processing algorithm. / <p>QC 20140428</p> / Multilayer (FP7-NMP4-2007-214122)

Page generated in 0.019 seconds