1 |
附最低保證變額年金保險最適資產配置及準備金之研究 / A study of optimal asset allocation and reserve for variable annuities insurance with guaranteed minimum benefit陳尚韋 Unknown Date (has links)
附最低保證投資型保險商品的特色在於無論投資者的投資績效好壞,保險金額皆享有一最低投資保證,過去關於此類商品的研究皆假設標的資產為單一資產,或依固定比例之投資組合,並沒有考慮到投資人自行配置投資組合的效果,但大部分市售商品中,投資人可以自行配置投資標,此情況之下,保險公司如何衡量適當的保證成本即為一相當重要之課題。
本研究假設投資人風險偏好服從冪次效用函數,並假設與保單所連結之投資標的有兩種資產,一為具有高風險高報酬的資產,另一為具有低風險低報酬之資產,在每個保單年度之初,投資人可以選擇配置在兩種資產之比例,我們運用黃迪揚(2009)所提出的動態規劃數值解之方法,計算出在考慮投資人自行配置資產之下,保證成本將會比固定比例之投資高出12個百分點。
此外,為了瞭解在不同資產報酬率的模型之下,保證成本是否會有不一樣的結論,除了對數常態模型之外,我們假設高風險資產與低風險資產服從ARIMA-GARCH(Autoregressive Integrated Moving Average-Generalized Autoregressive Conditional Heteroscedastic )模型,並得到較高的保證成本。 / The main characteristic of variable annuities (VA) with minimum benefits is that the benefit will be guaranteed. Previous literatures assume a specific underling asset return process when considering the guaranteed cost of VA; but they do not consider the portfolio choice opportunity of the policyholders. However, it is common for policyholders to rebalance his portfolio in many types of VA products. Therefore it’s important for insurance companies to apply an approximate method to measure the guaranteed cost.
In this research, we assume that there are two potential assets in policyholders’ portfolio; one with high risk and high return and the other one with low risk and low return. The utility function of the policyholder is assumed to follow a power utility. We consider the asset allocation effect on the guaranteed cost for a VA with guaranteed minimum withdrawal benefits, finding that the guaranteed cost will increase 12% compared with a specific underling asset.
The model effect of the asset return process is also examined by considering two different asset processes, the lognormal model and ARIMA-GARCH model. The solution of dynamic programming problem is solved by the numerical approach proposed by Huang (2009). Finally we get the conclusion which the guaranteed cost given by the ARIMA-GARCH model is greater than the lognormal model.
|
Page generated in 0.0276 seconds