1 |
用戶別售電量與電費收入之研究:台電公司實證案例 / A Study on Customer-by-Category Energy Sales and Power Sales Revenue Model: The Case of Taiwan Power Company蔡佩容 Unknown Date (has links)
本文旨在檢定台電公司現行季節電價月份劃分之合理性,並探討影響用戶別售電量與電費收入之經濟因素。為達成此目的,本文先就負載觀點與成本觀點進行群集分析,以檢定季節電價是否具統計意義之正當性;其次建立經濟計量模型,分別採用戶別之總售電量與總電費收入做為被解釋變數,運用民國88年1月至民國91年12月之月資料進行實證分析。本文建立之經濟模型有二,分別為時間序列以及複迴歸方程式模型。經檢定分析後,本文就各實證參數之經濟意涵加以闡示,最後並提出結論以及未來研究之方向。
本文透過月資料之群集分析,顯示夏月相對於非夏月之群集差異與台電公司現行季節電價夏月與非夏月之月份相一致,證實台電公司季節電價月份劃分之合理性。其次,透過ARIMA時間序列建立之短期電力需求預測模型,經實證結果顯示:電燈與電力用戶別之售電量均逐年增加,預測民國93年1月至民國99年12月,電燈用戶之年售電量平均成長率為3.33%、電力用戶為3.23%。再者,利用複迴歸模型進行實證分析之結果發現:(一)影響售電量之主要變數為溫度。惟因電燈用戶每隔兩月抄表一次,與電力用戶按月抄表之作業方式不同,故電燈用戶每月售電量係受前期(月)溫度影響,而電力用戶則受當期(月)溫度影響。(二)各用戶別之總電費收入與售電量有明顯相關,且經估算出各月售電量之電費收入彈性顯示:電燈用戶約為0.5,電力用戶約為1。由於總電費收入為總售電量與平均電價之乘積,故電燈用戶之電費收入增加1% 時,其售電量僅增加0.5%,顯示總電費的收入增加係有部分來自於平均電價的提高;換言之,就電燈用戶別而言,其電費收入增減變化之百分比除了會受到售電量增減幅度之影響外,亦反映了平均電價變化的情形。同理,對電力用戶來說,其各月售電量之電費收入彈性接近於1,表示電費收入變化1% 時,售電量亦增加1%,即電費收入之增減變化比例主要受到售電量之同向等幅變化所影響。
至於各用戶別之電費收入方面,電燈與電力兩類用戶自民國88年初至91年底四年期間均有逐年增加之趨勢,惟電力用戶之年增加幅度有隨時間遞減之現象,且歷年大抵以7-10月份較高,2月份最低。此外,影響用戶別電費收入之解釋變數中,各類用戶之售電量最為顯著,其參數值係隱示每增加一度售電量對其電費收入之影響。其中,電燈用戶之估計參數值為2.69,而電力用戶則為1.35。再者,由其電費收入之售電量彈性係數可以發現:電燈用戶約為1.2,電力用戶約為0.7,顯示電燈用戶總售電量增加1%時,總電費收入增加的幅度大於1%,而電力用戶則相反。推估電力用戶此一彈性係數較電燈用戶低之原因在於:電力用戶與電燈用戶之電價結構不同,前者係採需量電費與能量電費之兩部電價制,而後者僅包含流動電費之一部電價。最後,實證結果亦顯示電力系統之尖峰負載與負載率會影響電費收入,惟其影響幅度不大。 / A Study on Customer-by-Category Energy Sales and Power Sales Revenue Model: The Case of Taiwan Power Company
Abstract
The main purposes of this study are to examine the rationality of the seasonal pricing scheme defined by summer and non-summer months and to identify economic factors influencing customer-by-category energy sales and power sales revenue, utilizing the data of Taiwan Power Company (Taipower) as an empirical case. In order to achieve this objective, the cluster analysis from the perspective of load pattern and cost pattern are examined respectively to see if the seasonal pricing scheme has statistical meaning in its pattern differences in terms of summer vs. non-summer season. Second, two economic models including time-series analysis and multiple regression equations are formulated for the empirical case study. The subtotal energy sales and the subtotal power sales revenue by different type of customer categories, i.e. lighting and industrial customers, are set to be the explained variables. Data from January 1999 to December 2002 are collected for modeling simulation tests. The economic meanings and policy implications of the modeling results are elaborated on. And conclusions with directions for further research are presented.
Through the cluster analysis utilizing monthly data within the time frame mentioned above, empirical research results on the grouping cluster of summer vs. non-summer months shows a consistent trend with those defined by Taipower’s present seasonal pricing scheme. Second, the empirical results of ARIMA time-series model show that the forecasted energy sales of both lighting and industrial customers will be gradually increasing through January 2004 to December 2010, and the average annual growth rate of energy sales for the lighting customer is 3.33%, and for the industrial customer is 3.23%. On the other hand, the empirical research results through the multiple regression equations show that the main factor affecting the energy sales is temperature. Due to the different time schedules for reading electricity meters between the lighting customer and the industrial customer, i.e. the time interval for reading the meter of lighting customers is every two months and for industrial customers is every month, the monthly energy sales of the lighting customer are directly related to the temperature of the previous month, while the monthly sales of the industrial customer are directly related to the temperature of the present month. In addition, for each type of customers, there is an obvious correlation between the total power sales revenue and the total energy sales. Furthermore, the estimated elasticity of the total power sales revenue versus total energy sales is about 0.5 for the lighting customer, and about 1 for the industrial customer.
Since the total power sales revenue is the product of total energy sales times the average electricity price, when the total power sales revenue increases 1% with the total energy sales only increases 0.5%, it implies that the increase of total power sales revenue not just only comes from the increase of energy sales, but also partially affected by the increase of average electricity price. Similarly, for the industrial customer, when the elasticity of their monthly total power sales revenue versus total energy sales is close to 1, it implies that when the total power sales revenue increases 1%, the total energy sales also increase about 1%. In other words, the change of percentage of the total power sales revenue is mostly attributed to the variation of total energy sales, not because of the average electricity price.
As for the simulation results of the total power sales revenue, those of the lighting and industrial customers are both gradually increasing between the years 1999 to 2002. However, the increasing pace of the industrial customer tended to slow down. Moreover, both types of the customers possess a similar trend that their total power sales are higher in statistical meaning for the months from July to October, and lower for February, for those above three years. Besides, among the variables affecting each type of customer’s power sales revenue, the energy sales is the most significant one, its parameter implies that whenever the total energy sales increases one unit, i.e. one kwh, it would affect the total power sales revenue by that amount equivalent to the figure of the parameter. According to the empirical results, the estimated parameter mentioned-above of the lighting customer is 2.69, and 1.35 of the industrial customer respectively. That implies one kwh unit price for the lighting customer is 2.69 N.T. dollars, and 1.35 N.T. dollars for the industrial customer. Moreover, from the elasticity of the total energy sales versus the total power sales revenue, it shows that the elasticity of the lighting customer is around 1.2, and the elasticity of the industrial customer is around 0.7. The underlining reason of the difference between the two figures could be that the electricity pricing structure of the lighting and industrial customers are quite different. The industrial customer is charged by two-part tariff including a demand charge for the capacity use and an energy charge for the kwh use. While the lighting customer is charged simply by a single rate, i.e. the energy use. Finally, the empirical results also show that the magnitude of the peak load and the load factor of the whole electricity system also affect the total power sales revenue of each type of the customer, though with much less effect.
|
Page generated in 0.0202 seconds