• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 6
  • Tagged with
  • 6
  • 6
  • 6
  • 6
  • 6
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

台灣國際觀光旅館經營績效之研究

張陳寶書 Unknown Date (has links)
根據2001年台灣國際觀光旅舘資料,本研究首先利用資料包絡分析方法評估個別國際觀光旅舘之經營績效;然後,以複迴歸模型評估國際觀光旅舘經營績效差異之原因。由經營效率評估結果發現:(一)在不同投入、產出組合下,台灣國際觀光旅舘之整體技術效率平均值介於79.02 %與89.41 %之間,亦即台灣國際觀光旅舘在投入資源運用上仍存有改善的空間;同時在產出不變的情況下,平均可節省10.59 %-20.98 %之資源使用量;(二)規模效率平均值近乎於1,顯示:造成技術無效率之主要原因在於資源浪費。複迴歸模型實證結果顯示:(一)技術效率與獲利率具正向關係,意指技術效率愈高者,更能有效運用投入要素,以降低成本,獲得較高之利潤;(二)總營業收入與獲利率具負向關係,意謂市場競爭壓力,將促使國際觀光旅舘,改善其本身獲利能力,以存活於市場;(三)業務集中度與獲利率具負向關係,意即國際觀光旅舘將業務分散於客房部門及餐飲部門,以多樣化經營。因此,可提升國際觀光旅舘獲利能力;(四) 加入國際觀光旅舘連鎖集團,一方面可分享其國際商譽與管理風險,另一方面則為符合加入標準,而使得經營成本上升。因此,需視產出變數之選擇而定;(五)新加入國際觀光旅舘之獲利率,低於既有之國際觀光旅舘。因此,新加入國際觀光旅舘,需經過一段時間的調整,才能逐漸改善其獲利能力;(六)位於台北市之國際觀光旅舘,因係外國觀光旅客、商務必經之地,故需求較高,使得進入該市場之國際觀光旅舘,獲利能力較高。
2

台灣製造業的市場結構與利潤率之關係

羅美宏, Luo, Mei-Hong Unknown Date (has links)
主要章節為:第一章是緒論,第二章是市場結構與利潤率的主要概念,第三章是台灣 製造業的市場結構與利潤率的一般觀察,第四章是台灣製造業的市場結構與利潤率的 一般關係,第五章是開放經濟下市場結構與利潤率的關係,第六章是摘要及結論。 市場結構的概念來自個體經濟學,是由完全競爭、寡占、完全壟斷的理論,來觀察經 濟體系中的市場是處於那一種結構狀態。由此探尋這些市場結構的決定因素,以及其 對廠商、產業、整個經濟體系的影響。第二章中除討論上述概念外,並介紹各國研究 的結果。 第三章中將利用六十五年工商普查資料及中華徵信所各年出版的最大民營企業統計, 台灣地區工商財務總分析;就第二章的概念,對台灣製造業作實證觀察。 第四章中將利用單一方程式的複迴歸模型,對六十五年製造業產業利潤率及廠商利潤 率,與市場結構的關係作橫斷面的分析。 第五章中將討論開放經濟下,進口競爭,對國外市場依存度,外人投資,(關稅)保 護等因素對國內市場結構的影響。並利用第四章的方法,對六十五年製造業產業利潤 率與市場結構的關係作進一步的探討。最後一章為結論。
3

用戶別售電量與電費收入之研究:台電公司實證案例 / A Study on Customer-by-Category Energy Sales and Power Sales Revenue Model: The Case of Taiwan Power Company

蔡佩容 Unknown Date (has links)
本文旨在檢定台電公司現行季節電價月份劃分之合理性,並探討影響用戶別售電量與電費收入之經濟因素。為達成此目的,本文先就負載觀點與成本觀點進行群集分析,以檢定季節電價是否具統計意義之正當性;其次建立經濟計量模型,分別採用戶別之總售電量與總電費收入做為被解釋變數,運用民國88年1月至民國91年12月之月資料進行實證分析。本文建立之經濟模型有二,分別為時間序列以及複迴歸方程式模型。經檢定分析後,本文就各實證參數之經濟意涵加以闡示,最後並提出結論以及未來研究之方向。 本文透過月資料之群集分析,顯示夏月相對於非夏月之群集差異與台電公司現行季節電價夏月與非夏月之月份相一致,證實台電公司季節電價月份劃分之合理性。其次,透過ARIMA時間序列建立之短期電力需求預測模型,經實證結果顯示:電燈與電力用戶別之售電量均逐年增加,預測民國93年1月至民國99年12月,電燈用戶之年售電量平均成長率為3.33%、電力用戶為3.23%。再者,利用複迴歸模型進行實證分析之結果發現:(一)影響售電量之主要變數為溫度。惟因電燈用戶每隔兩月抄表一次,與電力用戶按月抄表之作業方式不同,故電燈用戶每月售電量係受前期(月)溫度影響,而電力用戶則受當期(月)溫度影響。(二)各用戶別之總電費收入與售電量有明顯相關,且經估算出各月售電量之電費收入彈性顯示:電燈用戶約為0.5,電力用戶約為1。由於總電費收入為總售電量與平均電價之乘積,故電燈用戶之電費收入增加1% 時,其售電量僅增加0.5%,顯示總電費的收入增加係有部分來自於平均電價的提高;換言之,就電燈用戶別而言,其電費收入增減變化之百分比除了會受到售電量增減幅度之影響外,亦反映了平均電價變化的情形。同理,對電力用戶來說,其各月售電量之電費收入彈性接近於1,表示電費收入變化1% 時,售電量亦增加1%,即電費收入之增減變化比例主要受到售電量之同向等幅變化所影響。 至於各用戶別之電費收入方面,電燈與電力兩類用戶自民國88年初至91年底四年期間均有逐年增加之趨勢,惟電力用戶之年增加幅度有隨時間遞減之現象,且歷年大抵以7-10月份較高,2月份最低。此外,影響用戶別電費收入之解釋變數中,各類用戶之售電量最為顯著,其參數值係隱示每增加一度售電量對其電費收入之影響。其中,電燈用戶之估計參數值為2.69,而電力用戶則為1.35。再者,由其電費收入之售電量彈性係數可以發現:電燈用戶約為1.2,電力用戶約為0.7,顯示電燈用戶總售電量增加1%時,總電費收入增加的幅度大於1%,而電力用戶則相反。推估電力用戶此一彈性係數較電燈用戶低之原因在於:電力用戶與電燈用戶之電價結構不同,前者係採需量電費與能量電費之兩部電價制,而後者僅包含流動電費之一部電價。最後,實證結果亦顯示電力系統之尖峰負載與負載率會影響電費收入,惟其影響幅度不大。 / A Study on Customer-by-Category Energy Sales and Power Sales Revenue Model: The Case of Taiwan Power Company Abstract The main purposes of this study are to examine the rationality of the seasonal pricing scheme defined by summer and non-summer months and to identify economic factors influencing customer-by-category energy sales and power sales revenue, utilizing the data of Taiwan Power Company (Taipower) as an empirical case. In order to achieve this objective, the cluster analysis from the perspective of load pattern and cost pattern are examined respectively to see if the seasonal pricing scheme has statistical meaning in its pattern differences in terms of summer vs. non-summer season. Second, two economic models including time-series analysis and multiple regression equations are formulated for the empirical case study. The subtotal energy sales and the subtotal power sales revenue by different type of customer categories, i.e. lighting and industrial customers, are set to be the explained variables. Data from January 1999 to December 2002 are collected for modeling simulation tests. The economic meanings and policy implications of the modeling results are elaborated on. And conclusions with directions for further research are presented. Through the cluster analysis utilizing monthly data within the time frame mentioned above, empirical research results on the grouping cluster of summer vs. non-summer months shows a consistent trend with those defined by Taipower’s present seasonal pricing scheme. Second, the empirical results of ARIMA time-series model show that the forecasted energy sales of both lighting and industrial customers will be gradually increasing through January 2004 to December 2010, and the average annual growth rate of energy sales for the lighting customer is 3.33%, and for the industrial customer is 3.23%. On the other hand, the empirical research results through the multiple regression equations show that the main factor affecting the energy sales is temperature. Due to the different time schedules for reading electricity meters between the lighting customer and the industrial customer, i.e. the time interval for reading the meter of lighting customers is every two months and for industrial customers is every month, the monthly energy sales of the lighting customer are directly related to the temperature of the previous month, while the monthly sales of the industrial customer are directly related to the temperature of the present month. In addition, for each type of customers, there is an obvious correlation between the total power sales revenue and the total energy sales. Furthermore, the estimated elasticity of the total power sales revenue versus total energy sales is about 0.5 for the lighting customer, and about 1 for the industrial customer. Since the total power sales revenue is the product of total energy sales times the average electricity price, when the total power sales revenue increases 1% with the total energy sales only increases 0.5%, it implies that the increase of total power sales revenue not just only comes from the increase of energy sales, but also partially affected by the increase of average electricity price. Similarly, for the industrial customer, when the elasticity of their monthly total power sales revenue versus total energy sales is close to 1, it implies that when the total power sales revenue increases 1%, the total energy sales also increase about 1%. In other words, the change of percentage of the total power sales revenue is mostly attributed to the variation of total energy sales, not because of the average electricity price. As for the simulation results of the total power sales revenue, those of the lighting and industrial customers are both gradually increasing between the years 1999 to 2002. However, the increasing pace of the industrial customer tended to slow down. Moreover, both types of the customers possess a similar trend that their total power sales are higher in statistical meaning for the months from July to October, and lower for February, for those above three years. Besides, among the variables affecting each type of customer’s power sales revenue, the energy sales is the most significant one, its parameter implies that whenever the total energy sales increases one unit, i.e. one kwh, it would affect the total power sales revenue by that amount equivalent to the figure of the parameter. According to the empirical results, the estimated parameter mentioned-above of the lighting customer is 2.69, and 1.35 of the industrial customer respectively. That implies one kwh unit price for the lighting customer is 2.69 N.T. dollars, and 1.35 N.T. dollars for the industrial customer. Moreover, from the elasticity of the total energy sales versus the total power sales revenue, it shows that the elasticity of the lighting customer is around 1.2, and the elasticity of the industrial customer is around 0.7. The underlining reason of the difference between the two figures could be that the electricity pricing structure of the lighting and industrial customers are quite different. The industrial customer is charged by two-part tariff including a demand charge for the capacity use and an energy charge for the kwh use. While the lighting customer is charged simply by a single rate, i.e. the energy use. Finally, the empirical results also show that the magnitude of the peak load and the load factor of the whole electricity system also affect the total power sales revenue of each type of the customer, though with much less effect.
4

台灣省各地區普查資料之統計分析

莊靖芬 Unknown Date (has links)
本研究的目的為研究台灣省在1990年之15-17歲的在學率,在找出可能影響因素並蒐集好相關的資料後,我們將蒐集到的資料分成兩個部份,一個部份用來建造模型,而另一個部份則用來測試所建立出來的模型。主要的過程是:先利用簡單迴歸模型了解各個可能的因素對於15-17歲的在學率的影響程度,經過許多分析及了解後再對這些變數採取可能的變數轉換(variable transformations),而後再利用三種常用的統計迴歸方法﹝包含有逐步迴歸(stepwise regression)方法、前進選擇(forward selection)方法以及後退消除(backward elimination)方法﹞去發展出一個適當的複迴歸模型(multiple regression model)。對於這個模型,以實際的台灣在學情況來看,我們看不出它有任何的不合理;同時也利用圖形及檢定去驗證模型的假設,其次還做有關迴歸參數的推論(inferences about regression parameters)。再其次,我們運用變異數分析的結果(analysis of variance results)以及新觀察值的預測情形(predictions of new observations)來評估模型的預測能力。最後並利用所得到的最適當的模型,對如何提昇15-17歲青少年的在學率給予適當的建議。 / The objective of this research is to study what factors may affect the schooling rates of 15-17 years old in Taiwan province in 1990. After finding out some possible factors and collecting those data regarding those factors, we separate the data (by stratified random sampling) into two sets. One set is used to construct the model, and the other set shall be used to test the model. The main process to build a regression model is as follows. First, we shall use simple linear regression models to help us to see if each factor may have relation with the schooling rates. With the analysis of residuals and so on, we then make appropriate transformations on each of these factors. Finally, we use three common statistical regression techniques (including stepwise regression, forward selection, and backward elimination methods) to develop a suitable multiple regression model. It seems that, by our understanding of schooling rates in Taiwan, this model is not unreasonable. In addition, we verify the assumptions of the model by graphical methods and statistical tests. We also do the inferences about regression parameters. Furthermore, ye use the results of the analysis of variance and predictions of new observations to evaluate the prediction ability of the model. Finally, we use the most appropriate multiple regression model to give some suggestions to improve (or keep) the schooling rates of 15-17 years old.
5

台灣自行車產業與景氣循環之探討

駱俊文, Chun-Wen Lo January 1900 (has links)
自行車一詞儼然成為綠色環保的代名詞之一,台灣自行車業過去在國際間,被認定為品質粗糙的產品,在經過多年努力的情況下,台灣自行車業不斷的備受肯定,隨著近年全球暖化議題、全球性健康概念、油價飆漲、金融海嘯爆發等,諸多原因造成自行車從不被看好的代步工具,演變到現在成為休閒運動工具的轉變,其中;台灣自行車2008年的金融海嘯中,相較於其他傳統產業,不論是出口產值或是股價不降反漲,大舉逆勢成長,其中巨大(Giant)、美利達(Merida)、愛地雅(Ideal),成車製造商,近年來分別占出口前三大。 所以本研究要探討,金融海嘯爆發的前後,對台灣自行車業帶來的影響,研究資料選定為2000年1月至2013年12月間的巨大股價(9921)、美利達股價(9914)、愛地雅股價(8933)、台灣股價加權指數(TWII)、原油價格、工業生產指數的月資料,共168筆。透過單根檢定檢測資料是否為定態,利用共整合檢定確定是否含有至少一組解,搭配向量誤差修正模型檢測變數間的長短其關係,在利用複迴歸模型檢測。 研究結果顯示,巨大、美利達、愛地雅和台灣加權股價指數具有顯著關係,由於台灣自行車屬於出口導向以及中高價位產品,故全球景氣對台灣自行車業深具影響。其中,巨大和美利達除了ODM外,亦有自有品牌在全球銷售,愛地雅定位專業ODM專業代工廠,前者發展不同市場。 / The word "bicycle" has become one of the pronouns of environmental protection. In the past, Taiwan bicycling industry was treated as low-quality products internationally. With long-time effort, Taiwan bicycling industry was highly appreciated. Recently, global warming issue, cosmopolitan health sense, dramatically increased oil price, the eruption of financial crisis, and many reasons lead the bicycles have not positively evaluated as means of transportation. Now, it becomes the outdoor recreation mean. Comparing Taiwan bicycling industry with other traditional industry, it doesn't fall down but highly increase no matter export value or stock price. The manufacturer of Giant, Merida, and Ideal are the top 3 of export recently. So this study want to explore the things happened before and after the outbreak of the financial crisis that affects bicycle industry in Taiwan, research data for selected between January 2000 and December 2013, relationship between the Giant(9921) shares, Merida (9914) shares, Ideal(8933) shares, TWII, the price of crude oil, industrial production index. Through the Unit Root Test to test whether the data is the steady state or not. By using cointegration test to make sure whether contains at least one group of solutions and vector error correction model to detect the length of the relationship between variables, and using the multiple regression model to test. Results of the research shows that Giant, Merida, Ideal has significant relationship with TWII, because Taiwan bicycle are export-oriented and high price products, so the global boom has profound influence to Taiwan bicycle industry, among them, the Giant and Merida except the ODM, have their own brands in global sales, Ideal professional locate, ODM professional contract, the former develops different markets. / 摘要 I Abstract II 謝辭 III 目錄 IV 圖目錄 VI 表目錄 VII 第一章 緒論 1 第一節 研究動機 1 第二節 研究目的 3 第三節 巨大機械工業股份有限公司簡介 4 第四節 美利達工業股份有限公司簡介 5 第五節 愛地雅工業股份有限公司簡介 6 第六節 研究架構 7 第二章 文獻回顧 9 第一節 國內相關文獻 9 第二節 國外相關文獻 11 第三節 國內外文獻一覽表 12 第三章 研究方法 20 第一節 單根檢定 20 第二節 共整合檢定 22 第三節 向量誤差修正模型(VECM) 24 第四節 迴歸分析 24 第四章 實證分析 26 第一節 資料來源與處理 26 第二節 敘述統計 31 第三節 單根檢定 32 第四節 共整合檢定 33 第五節 向量誤差修正模型(VECM) 33 第六節 複迴歸模型 35 第五章 結果分析與建議 38 第一節 結果分析 38 第二節 建議 39 參考文獻 40 附錄一 巨大工業股份有限公司沿革 43 附錄二 美利達股份有限公司沿革 47 附錄三 愛地雅股份有限公司沿革 57 圖目錄 圖1-6 研究架構 8 圖4-1-1 台灣自行車業總出口產值(百萬元,美金) 27 圖4-1-2 台灣股價大盤指數(TWII,當日收盤價) 27 圖4-1-3 巨大股價(9921,當日收盤價) 28 圖4-1-4 美利達股價(9914,當日收盤價) 28 圖4-1-5 愛地雅股價(8933,當日收盤價) 29 圖4-1-6 國際原油價格(西德州,美元) 29 圖4-1-7 台灣工業生產指數 30 表目錄 表1-3 巨大公司基本資料 4 表1-4 美利達公司基本資料 5 表1-5 愛地雅公司基本資料 6 表2-3 國內外相關文獻整理 12 表4-1 資料來源一覽表 26 表4-3-1 ADF 單根檢定 32 表4-3-2 單根檢定-一階差分 32 表4-4-1 共整合檢定 33 表4-5-1 Giant & Merida 向量誤差修正模型 34 表4-5-2 Giant & Ideal 向量誤差修正模型 34 表4-5-3 Merida & Ideal 向量誤差修正模型 34 表4-6-1 自行車產業與景氣循環對巨大股價之影響 37 表4-6-2 自行車產業與景氣循環對美利達股價之影響 37 表4-6-3 自行車產業與景氣循環對愛地雅股價之影響 37
6

複迴歸係數排列檢定方法探討 / Methods for testing significance of partial regression coefficients in regression model

闕靖元, Chueh, Ching Yuan Unknown Date (has links)
在傳統的迴歸模型架構下,統計推論的進行需要假設誤差項之間相互獨立,且來自於常態分配。當理論模型假設條件無法達成的時候,排列檢定(permutation tests)這種無母數的統計方法通常會是可行的替代方法。 在以往的文獻中,應用於複迴歸模型(multiple regression)之係數排列檢定方法主要以樞紐統計量(pivotal quantity)作為檢定統計量,進而探討不同排列檢定方式的差異。本文除了採用t統計量這一個樞紐統計量作為檢定統計量的排列檢定方式外,亦納入以非樞紐統計量的迴歸係數估計量b22所建構而成的排列檢定方式,藉由蒙地卡羅模擬方法,比較以此兩類檢定方式之型一誤差(type I error)機率以及檢定力(power),並觀察其可行性以及適用時機。模擬結果顯示,在解釋變數間不相關且誤差分配較不偏斜的情形下,Freedman and Lane (1983)、Levin and Robbins (1983)、Kennedy (1995)之排列方法在樣本數大時適用b2統計量,且其檢定力較使用t2統計量高,但差異程度不大;若解釋變數間呈現高度相關,則不論誤差的偏斜狀態,Freedman and Lane (1983)、Kennedy (1995) 之排列方法於樣本數大時適用b2統計量,其檢定力結果也較使用t2統計量高,而且兩者的差異程度比起解釋變數間不相關時更加明顯。整體而言,使用t2統計量適用的場合較廣;相反的,使用b2的模擬結果則常需視樣本數大小以及解釋變數間相關性而定。 / In traditional linear models, error term are usually assumed to be independently, identically, normally distributed with mean zero and a constant variance. When the assumptions cannot meet, permutation tests can be an alternative method. Several permutation tests have been proposed to test the significance of a partial regression coefficient in a multiple regression model. t=b⁄(se(b)), an asymptotically pivotal quantity, is usually preferred and suggested as the test statistic. In this study, we take not only t statistics, but also the estimates of the partial regression coefficient as our test statistics. Their performance are compared in terms of the probability of committing a type I error and the power through the use of Monte Carlo simulation method. Situations where estimates of the partial regression coefficients may outperform t statistics are discussed.

Page generated in 0.029 seconds