• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Interval Estimation for the Correlation Coefficient

Jung, Aekyung 11 August 2011 (has links)
The correlation coefficient (CC) is a standard measure of the linear association between two random variables. The CC plays a significant role in many quantitative researches. In a bivariate normal distribution, there are many types of interval estimation for CC, such as z-transformation and maximum likelihood estimation based methods. However, when the underlying bivariate distribution is unknown, the construction of confidence intervals for the CC is still not well-developed. In this thesis, we discuss various interval estimation methods for the CC. We propose a generalized confidence interval and three empirical likelihood-based non-parametric intervals for the CC. We also conduct extensive simulation studies to compare the new intervals with existing intervals in terms of coverage probability and interval length. Finally, two real examples are used to demonstrate the application of the proposed methods.
2

Predicting drug residue depletion to establish a withdrawal period with data below the limit of quantitation (LOQ)

McGowan, Yan January 1900 (has links)
Doctor of Philosophy / Department of Statistics / Christopher Vahl / Veterinary drugs are used extensively for disease prevention and treatment in food producing animals. The residues of these drugs and their metabolites can pose risks for human health. Therefore, a withdrawal time is established to ensure consumer safety so that tissue, milk or eggs from treated animals cannot be harvested for human consumption until enough time has elapsed for the residue levels to decrease to safe concentrations. Part of the process to establish a withdrawal time involves a linear regression to model drug residue depletion over time. This regression model is used to calculate a one-sided, upper tolerance limit for the amount of drug residue remaining in target tissue as a function of time. The withdrawal period is then determined by finding the smallest time so that the upper tolerance limit falls below the maximum residue limit. Observations with measured residue levels at or below the limit of quantitation (LOQ) of the analytical method present a special challenge in the estimation of the tolerance limit. Because values observed below the LOQ are thought to be unreliable, they add in an additional source of uncertainty and, if dealt with improperly or ignored, can introduce bias in the estimation of the withdrawal time. The U.S. Food and Drug Administration (FDA) suggests excluding such data while the European Medicine Agency (EMA) recommends replacing observations below the LOQ with a fixed number, specifically half the value of the LOQ. However, observations below LOQ are technically left censored and these methods are do not effectively address this fact. As an alternative, a regression method accounting for left-censoring is proposed and implemented in order to adequately model residue depletion over time. Furthermore, a method based on generalized (or fiducial) inference is developed to compute a tolerance limit with results from the proposed regression method. A simulation study is then conducted to compare the proposed withdrawal time calculation procedure to the current FDA and EMA approaches. Finally, the proposed procedures are applied to real experimental data.
3

Inferences for the Weibull parameters based on interval-censored data and its application

Huang, Jinn-Long 19 June 2000 (has links)
In this article, we make inferences for the Weibull parameters and propose two test statistics for the comparison of two Weibull distributions based on interval-censored data. However, the distributions of the two statistics are unknown and not easy to obtain, therefore a simulation study is necessary. An urn model in the simulation of interval-censored data was proposed by Lee (1999) to select random intervals. Then we propose a simulation procedure with urn model to obtain approximately the quantiles of the two statistics. We demonstrate an example in AIDS study to illustrate how the tests can be applied to the infection time distributions of AIDS.
4

複迴歸係數排列檢定方法探討 / Methods for testing significance of partial regression coefficients in regression model

闕靖元, Chueh, Ching Yuan Unknown Date (has links)
在傳統的迴歸模型架構下,統計推論的進行需要假設誤差項之間相互獨立,且來自於常態分配。當理論模型假設條件無法達成的時候,排列檢定(permutation tests)這種無母數的統計方法通常會是可行的替代方法。 在以往的文獻中,應用於複迴歸模型(multiple regression)之係數排列檢定方法主要以樞紐統計量(pivotal quantity)作為檢定統計量,進而探討不同排列檢定方式的差異。本文除了採用t統計量這一個樞紐統計量作為檢定統計量的排列檢定方式外,亦納入以非樞紐統計量的迴歸係數估計量b22所建構而成的排列檢定方式,藉由蒙地卡羅模擬方法,比較以此兩類檢定方式之型一誤差(type I error)機率以及檢定力(power),並觀察其可行性以及適用時機。模擬結果顯示,在解釋變數間不相關且誤差分配較不偏斜的情形下,Freedman and Lane (1983)、Levin and Robbins (1983)、Kennedy (1995)之排列方法在樣本數大時適用b2統計量,且其檢定力較使用t2統計量高,但差異程度不大;若解釋變數間呈現高度相關,則不論誤差的偏斜狀態,Freedman and Lane (1983)、Kennedy (1995) 之排列方法於樣本數大時適用b2統計量,其檢定力結果也較使用t2統計量高,而且兩者的差異程度比起解釋變數間不相關時更加明顯。整體而言,使用t2統計量適用的場合較廣;相反的,使用b2的模擬結果則常需視樣本數大小以及解釋變數間相關性而定。 / In traditional linear models, error term are usually assumed to be independently, identically, normally distributed with mean zero and a constant variance. When the assumptions cannot meet, permutation tests can be an alternative method. Several permutation tests have been proposed to test the significance of a partial regression coefficient in a multiple regression model. t=b⁄(se(b)), an asymptotically pivotal quantity, is usually preferred and suggested as the test statistic. In this study, we take not only t statistics, but also the estimates of the partial regression coefficient as our test statistics. Their performance are compared in terms of the probability of committing a type I error and the power through the use of Monte Carlo simulation method. Situations where estimates of the partial regression coefficients may outperform t statistics are discussed.

Page generated in 0.0615 seconds