1 |
干擾狀況下的交通標誌偵測與辨識楊修銘, Yang,Hsiu-Ming Unknown Date (has links)
在不利的環境下做交通標誌的偵測與辨識是一件非常艱困的工作,無論在郊區或市區,複雜的環境、天候、陰影以及任何和光線有關的因素甚至是交通標誌遭到遮蔽都將使得偵測與辨識交通標誌變得相當困難。在本篇論文中,我們定義出較寬鬆的顏色分類(color thresholding)方法,配合一些交通標誌的特徵(如外形)來實作出召回率(Recall)較高的偵測系統,另外在辨識方面,最重要的是找出好的辨識特徵,因此我們利用離散餘弦轉換(discrete cosine transform)和奇異值分解(singular value decomposition)處理待辨識標誌擷取其特徵,並配合一些其他的交通標誌特徵,當作類神經網路(ANN)、naïve Bayes classifier等辨識方法的輸入,來幫助我們完成辨識的工作。目前實作出來的系統在有挑戰性的測試資料下有七成六左右的辨識率。 / Robust traffic sign recognition can be a difficult task if we aim at detecting and recognizing traffic signs in images captured under unfavorable environments. Complex background, weather, shadow, and other illumination-related problems may make it difficult to detect and recognize signs in the rural as well as the urban areas. In this thesis, I define a formula for color classification and apply other related features such as the shape of the traffic signs to implement the detection component that offers high recall rate. In traffic sign recognition, the most important thing is to get the effective features. I use discrete cosine transform and singular value decomposition to collect the invariant features of traffic signs that will not be severely interfered by disturbing environments. These invariant features can be used as the input to artificial neural networks or naïve Bayes models to achieve the recognition task. This system yields satisfactory performance about 76% recognition rate when I test them with very challenging data.
|
2 |
應用模糊邏輯的攝影構圖辨認方法 / A Fuzzy Logic Approach for Recognition of Photographic Compositions黃瑞華, Huang, Jui Hua Unknown Date (has links)
本論文應用攝影構圖法則,以模糊邏輯理論為基礎,判別影像的攝影構圖類型。構圖(Composition)乃是攝影這項平面藝術創作最重要的美學元素之一,其目的是利用空間中的物體配置,經由透視投影後,讓畫面的整體呈現平衡感;專業的、優秀的攝影作品,皆會符合攝影的基本構圖原理。因此許多的影像增強、影像合成的應用中,也應該配合相片原本的構圖設計,針對所欲表達的重點予與適當地調整,而非「盲目的」以一體適用的法則去處理每一張照片。
論文中,我們針對影像所欲表達的重點區域,分析其結構特性,設計不同的特徵,並以模糊邏輯理論為基礎,應用Mamdani系統,結合隸屬函數與攝影構圖判別法則的交互作用,用以辨認所欲處理相片的構圖類別。依據辨認後的構圖類別,即可對該影像做適當地分割及調整,以使相片能有最佳的影像增強處理。
實驗證明,本文所提出的方法能有效地辨認攝影構圖類別,針對不同攝影構圖所作的影像修正,才能更符合人眼的視覺喜好。 / This thesis addresses the problem of how to recognize the photographic composition from a given photo based on the theory of fuzzy logic. Composition is one of the important aesthetics for the plane figure photo art. To present the balance of its holistic picture, it takes the advantage of special object arrangement after acting perspective projection. A piece of professional and qualified photo work will realize these basic photo composition methods. For many applications about the digital photo, the operations, i.e., photo enhancement, segmentation, output, and synthesis, all need to match up the photographic composition to do accurate processing rather than “blind” processing that assumes each photo with the same “composition.”
An automatic recognition method using image features from some specific regions is described. The method is employed in a Mamdani model and combines outputs of multiple fuzzy logic rules and feature extraction algorithms to obtain confidences that can identify the correct photographic composition.
Experimental results show that the proposed method is robust and effective for photographic composition recognition. The feature with adjusting in different photo composing will be able to comfort our human sight.
|
Page generated in 0.0125 seconds