• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 15
  • 15
  • 15
  • 8
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Automated Enrichment of Global World View Information based on Car2X

Phothithiraphong, Thanaset 29 June 2016 (has links) (PDF)
The purpose of this thesis is to develop the architecture to use the Car2X for observation the local traffic sign and displays it on the OpenStreetMap to provide more information of the road side to the driver. The proposed architecture of this thesis is to convert the traffic sign into the barcode and to be scanned by the barcode scanner and then wirelessly transfers the data to the web server to store the data and displays the traffic sign on the OpenStreetMap in the web browser. It uses two Raspberry Pi boards with CAN-Bus shields for transmitting the data on the CAN-Bus system in the car, a barcode scanner to scan the barcode, a GPS module to get its location, and a WiFi dongle to wirelessly send the data. The thesis also includes the camera to detect the traffic light using OpenCV and sends the GO or STOP command to the car. The results provide the OpenStreetMap with the traffic sign which helps the driver to realize the traffic sign on the road of the desired destination. However, the accuracy of GPS is not satisfied as well as the distance of the barcode scanning, therefore, this thesis suggests that includes the gps position in the barcode and uses the camera to detect the barcode for the improvement in the future.
2

Convolutional neural network reliability on an APSoC platform a traffic-sign recognition case study / Confiabilidade de uma rede neural convolucional em uma plataforma APSoC: um estudo para reconhecimento de placas de trânsito

Lopes, Israel da Costa January 2017 (has links)
O aprendizado profundo tem inúmeras aplicações na visão computacional, reconhecimento de fala, processamento de linguagem natural e outras aplicações de interesse comercial. A visão computacional, por sua vez, possui muitas aplicações em áreas distintas, indo desde o entretenimento à aplicações relevantes e críticas. O reconhecimento e manipulação de faces (Snapchat), e a descrição de objetos em fotos (OneDrive) são exemplos de aplicações no entretenimento. Ao passo que, a inspeção industrial, o diagnóstico médico, o reconhecimento de objetos em imagens capturadas por satélites (usadas em missões de resgate e defesa), os carros autônomos e o Sistema Avançado de Auxílio ao Motorista (SAAM) são exemplos de aplicações relevantes e críticas. Algumas das empresas de circuitos integrados mais importantes do mundo, como Xilinx, Intel e Nvidia estão apostando em plataformas dedicadas para acelerar o treinamento e a implementação de algoritmos de aprendizado profundo e outras alternativas de visão computacional para carros autônomos e SAAM devido às suas altas necessidades computacionais. Assim, implementar sistemas de aprendizado profundo que alcançam alto desempenho com o custo de baixa utilização de área e dissipação de potência é um grande desafio. Além do mais, os circuitos eletrônicos para a indústria automotiva devem ser confiáveis mesmo sob efeitos da radiação, defeitos de fabricação e efeitos do envelhecimento. Assim, um gerador automático de VHSIC (Very High Speed Integrated Circuit) Hardware Description Language (VHDL) para Redes Neurais Convolucionais (RNC) foi desenvolvido para reduzir o tempo associado a implementação de algoritmos de aprendizado profundo em hardware. Como estudo de caso, uma RNC foi treinada pela ferramenta Convolutional Architecture for Fast Feature Embedding (Caffe), de modo a classificar 6 classes de placas de trânsito, alcançando uma precisão de cerca de 89,8% no conjunto de dados German Traffic-Sign Recognition Benchmark (GTSRB), que contém imagens de placas de trânsito em cenários complexos. Essa RNC foi implementada num All-Programmable System-on- Chip (APSoC) Zynq-7000, resultando em 313 Frames Por Segundo (FPS) em imagens normalizadas para 32x32, com o APSoC dissipando uma potência de somente 2.057 W, enquanto uma Graphics Processing Unit (GPU) embarcada, em seu modo de operação mínimo, dissipa 10 W. A confiabilidade da RNC proposta foi investigada por injeções de falhas acumuladas e aleatórias por emulação nos bits de configuração da Lógica Programável (LP) do APSoC, alcançando uma confiabilidade de 80,5% sob Single-Bit-Upset (SBU) onde foram considerados ambos os Dados Corrompidos Silenciosos (DCSs) críticos e os casos em que o sistema não respondeu no tempo esperado (time-outs). Em relação às falhas múltiplas, a confiabilidade da RNC decresce exponencialmente com o número de falhas acumuladas. Em vista disso, a confiabilidade da RNC proposta deve ser aumentada através do uso de técnicas de proteção durante o fluxo de projeto. / Deep learning has a plethora of applications in computer vision, speech recognition, natural language processing and other applications of commercial interest. Computer vision, in turn, has many applications in distinct areas, ranging from entertainment applications to relevant and critical applications. Face recognition and manipulation (Snapchat), and object description in pictures (OneDrive) are examples of entertainment applications. Industrial inspection, medical diagnostics, object recognition in images captured by satellites (used in rescue and defense missions), autonomous cars and Advanced Driver-Assistance System (ADAS) are examples of relevant and critical applications. Some of the most important integrated circuit companies around the world, such as Xilinx, Intel and Nvidia are waging in dedicated platforms for accelerating the training and deployment of deep learning and other computer vision algorithms for autonomous cars and ADAS due to their high computational requirement. Thus, implementing a deep learning system that achieves high performance with low area utilization and power consumption costs is a big challenge. Besides, electronic equipment for automotive industry must be reliable even under radiation effects, manufacturing defects and aging effects, inasmuch as if a system failure occurs, a car accident can happen. Thus, a Convolutional Neural Network (CNN) VHSIC (Very High Speed Integrated Circuit) Hardware Description Language (VHDL) automatic generator was developed to reduce the design time associated to the implementation of deep learning algorithms in hardware. As a case study, a CNN was trained by the Convolutional Architecture for Fast Feature Embedding (Caffe) framework, in order to classify 6 traffic-sign classes, achieving an average accuracy of about 89.8% on the German Traffic-Sign Recognition Benchmark (GTSRB) dataset, which contains trafficsigns images in complex scenarios. This CNN was implemented on a Zynq-7000 All- Programmable System-on-Chip (APSoC), achieving about 313 Frames Per Second (FPS) on 32x32-normalized images, with the APSoC consuming only 2.057W, while an embedded Graphics Processing Unit (GPU), in its minimum operation mode, consumes 10W. The proposed CNN reliability was investigated by random piled-up fault injection by emulation in the Programming Logic (PL) configuration bits of the APSoC, achieving 80.5% of reliability under Single-Bit-Upset (SBU) where both critical Silent Data Corruptions (SDCs) and time-outs were considered. Regarding the multiple faults, the proposed CNN reliability exponentially decreases with the number of piled-up faults. Hence, the proposed CNN reliability must be increased by using hardening techniques during the design flow.
3

Generation of Training Data by Degradation Models for Traffic Sign Symbol Recognition

MURASE, Hiroshi, MEKADA, Yoshito, IDE, Ichiro, TAKAHASHI, Tomokazu, ISHIDA, Hiroyuki 01 August 2007 (has links)
No description available.
4

Convolutional neural network reliability on an APSoC platform a traffic-sign recognition case study / Confiabilidade de uma rede neural convolucional em uma plataforma APSoC: um estudo para reconhecimento de placas de trânsito

Lopes, Israel da Costa January 2017 (has links)
O aprendizado profundo tem inúmeras aplicações na visão computacional, reconhecimento de fala, processamento de linguagem natural e outras aplicações de interesse comercial. A visão computacional, por sua vez, possui muitas aplicações em áreas distintas, indo desde o entretenimento à aplicações relevantes e críticas. O reconhecimento e manipulação de faces (Snapchat), e a descrição de objetos em fotos (OneDrive) são exemplos de aplicações no entretenimento. Ao passo que, a inspeção industrial, o diagnóstico médico, o reconhecimento de objetos em imagens capturadas por satélites (usadas em missões de resgate e defesa), os carros autônomos e o Sistema Avançado de Auxílio ao Motorista (SAAM) são exemplos de aplicações relevantes e críticas. Algumas das empresas de circuitos integrados mais importantes do mundo, como Xilinx, Intel e Nvidia estão apostando em plataformas dedicadas para acelerar o treinamento e a implementação de algoritmos de aprendizado profundo e outras alternativas de visão computacional para carros autônomos e SAAM devido às suas altas necessidades computacionais. Assim, implementar sistemas de aprendizado profundo que alcançam alto desempenho com o custo de baixa utilização de área e dissipação de potência é um grande desafio. Além do mais, os circuitos eletrônicos para a indústria automotiva devem ser confiáveis mesmo sob efeitos da radiação, defeitos de fabricação e efeitos do envelhecimento. Assim, um gerador automático de VHSIC (Very High Speed Integrated Circuit) Hardware Description Language (VHDL) para Redes Neurais Convolucionais (RNC) foi desenvolvido para reduzir o tempo associado a implementação de algoritmos de aprendizado profundo em hardware. Como estudo de caso, uma RNC foi treinada pela ferramenta Convolutional Architecture for Fast Feature Embedding (Caffe), de modo a classificar 6 classes de placas de trânsito, alcançando uma precisão de cerca de 89,8% no conjunto de dados German Traffic-Sign Recognition Benchmark (GTSRB), que contém imagens de placas de trânsito em cenários complexos. Essa RNC foi implementada num All-Programmable System-on- Chip (APSoC) Zynq-7000, resultando em 313 Frames Por Segundo (FPS) em imagens normalizadas para 32x32, com o APSoC dissipando uma potência de somente 2.057 W, enquanto uma Graphics Processing Unit (GPU) embarcada, em seu modo de operação mínimo, dissipa 10 W. A confiabilidade da RNC proposta foi investigada por injeções de falhas acumuladas e aleatórias por emulação nos bits de configuração da Lógica Programável (LP) do APSoC, alcançando uma confiabilidade de 80,5% sob Single-Bit-Upset (SBU) onde foram considerados ambos os Dados Corrompidos Silenciosos (DCSs) críticos e os casos em que o sistema não respondeu no tempo esperado (time-outs). Em relação às falhas múltiplas, a confiabilidade da RNC decresce exponencialmente com o número de falhas acumuladas. Em vista disso, a confiabilidade da RNC proposta deve ser aumentada através do uso de técnicas de proteção durante o fluxo de projeto. / Deep learning has a plethora of applications in computer vision, speech recognition, natural language processing and other applications of commercial interest. Computer vision, in turn, has many applications in distinct areas, ranging from entertainment applications to relevant and critical applications. Face recognition and manipulation (Snapchat), and object description in pictures (OneDrive) are examples of entertainment applications. Industrial inspection, medical diagnostics, object recognition in images captured by satellites (used in rescue and defense missions), autonomous cars and Advanced Driver-Assistance System (ADAS) are examples of relevant and critical applications. Some of the most important integrated circuit companies around the world, such as Xilinx, Intel and Nvidia are waging in dedicated platforms for accelerating the training and deployment of deep learning and other computer vision algorithms for autonomous cars and ADAS due to their high computational requirement. Thus, implementing a deep learning system that achieves high performance with low area utilization and power consumption costs is a big challenge. Besides, electronic equipment for automotive industry must be reliable even under radiation effects, manufacturing defects and aging effects, inasmuch as if a system failure occurs, a car accident can happen. Thus, a Convolutional Neural Network (CNN) VHSIC (Very High Speed Integrated Circuit) Hardware Description Language (VHDL) automatic generator was developed to reduce the design time associated to the implementation of deep learning algorithms in hardware. As a case study, a CNN was trained by the Convolutional Architecture for Fast Feature Embedding (Caffe) framework, in order to classify 6 traffic-sign classes, achieving an average accuracy of about 89.8% on the German Traffic-Sign Recognition Benchmark (GTSRB) dataset, which contains trafficsigns images in complex scenarios. This CNN was implemented on a Zynq-7000 All- Programmable System-on-Chip (APSoC), achieving about 313 Frames Per Second (FPS) on 32x32-normalized images, with the APSoC consuming only 2.057W, while an embedded Graphics Processing Unit (GPU), in its minimum operation mode, consumes 10W. The proposed CNN reliability was investigated by random piled-up fault injection by emulation in the Programming Logic (PL) configuration bits of the APSoC, achieving 80.5% of reliability under Single-Bit-Upset (SBU) where both critical Silent Data Corruptions (SDCs) and time-outs were considered. Regarding the multiple faults, the proposed CNN reliability exponentially decreases with the number of piled-up faults. Hence, the proposed CNN reliability must be increased by using hardening techniques during the design flow.
5

Convolutional neural network reliability on an APSoC platform a traffic-sign recognition case study / Confiabilidade de uma rede neural convolucional em uma plataforma APSoC: um estudo para reconhecimento de placas de trânsito

Lopes, Israel da Costa January 2017 (has links)
O aprendizado profundo tem inúmeras aplicações na visão computacional, reconhecimento de fala, processamento de linguagem natural e outras aplicações de interesse comercial. A visão computacional, por sua vez, possui muitas aplicações em áreas distintas, indo desde o entretenimento à aplicações relevantes e críticas. O reconhecimento e manipulação de faces (Snapchat), e a descrição de objetos em fotos (OneDrive) são exemplos de aplicações no entretenimento. Ao passo que, a inspeção industrial, o diagnóstico médico, o reconhecimento de objetos em imagens capturadas por satélites (usadas em missões de resgate e defesa), os carros autônomos e o Sistema Avançado de Auxílio ao Motorista (SAAM) são exemplos de aplicações relevantes e críticas. Algumas das empresas de circuitos integrados mais importantes do mundo, como Xilinx, Intel e Nvidia estão apostando em plataformas dedicadas para acelerar o treinamento e a implementação de algoritmos de aprendizado profundo e outras alternativas de visão computacional para carros autônomos e SAAM devido às suas altas necessidades computacionais. Assim, implementar sistemas de aprendizado profundo que alcançam alto desempenho com o custo de baixa utilização de área e dissipação de potência é um grande desafio. Além do mais, os circuitos eletrônicos para a indústria automotiva devem ser confiáveis mesmo sob efeitos da radiação, defeitos de fabricação e efeitos do envelhecimento. Assim, um gerador automático de VHSIC (Very High Speed Integrated Circuit) Hardware Description Language (VHDL) para Redes Neurais Convolucionais (RNC) foi desenvolvido para reduzir o tempo associado a implementação de algoritmos de aprendizado profundo em hardware. Como estudo de caso, uma RNC foi treinada pela ferramenta Convolutional Architecture for Fast Feature Embedding (Caffe), de modo a classificar 6 classes de placas de trânsito, alcançando uma precisão de cerca de 89,8% no conjunto de dados German Traffic-Sign Recognition Benchmark (GTSRB), que contém imagens de placas de trânsito em cenários complexos. Essa RNC foi implementada num All-Programmable System-on- Chip (APSoC) Zynq-7000, resultando em 313 Frames Por Segundo (FPS) em imagens normalizadas para 32x32, com o APSoC dissipando uma potência de somente 2.057 W, enquanto uma Graphics Processing Unit (GPU) embarcada, em seu modo de operação mínimo, dissipa 10 W. A confiabilidade da RNC proposta foi investigada por injeções de falhas acumuladas e aleatórias por emulação nos bits de configuração da Lógica Programável (LP) do APSoC, alcançando uma confiabilidade de 80,5% sob Single-Bit-Upset (SBU) onde foram considerados ambos os Dados Corrompidos Silenciosos (DCSs) críticos e os casos em que o sistema não respondeu no tempo esperado (time-outs). Em relação às falhas múltiplas, a confiabilidade da RNC decresce exponencialmente com o número de falhas acumuladas. Em vista disso, a confiabilidade da RNC proposta deve ser aumentada através do uso de técnicas de proteção durante o fluxo de projeto. / Deep learning has a plethora of applications in computer vision, speech recognition, natural language processing and other applications of commercial interest. Computer vision, in turn, has many applications in distinct areas, ranging from entertainment applications to relevant and critical applications. Face recognition and manipulation (Snapchat), and object description in pictures (OneDrive) are examples of entertainment applications. Industrial inspection, medical diagnostics, object recognition in images captured by satellites (used in rescue and defense missions), autonomous cars and Advanced Driver-Assistance System (ADAS) are examples of relevant and critical applications. Some of the most important integrated circuit companies around the world, such as Xilinx, Intel and Nvidia are waging in dedicated platforms for accelerating the training and deployment of deep learning and other computer vision algorithms for autonomous cars and ADAS due to their high computational requirement. Thus, implementing a deep learning system that achieves high performance with low area utilization and power consumption costs is a big challenge. Besides, electronic equipment for automotive industry must be reliable even under radiation effects, manufacturing defects and aging effects, inasmuch as if a system failure occurs, a car accident can happen. Thus, a Convolutional Neural Network (CNN) VHSIC (Very High Speed Integrated Circuit) Hardware Description Language (VHDL) automatic generator was developed to reduce the design time associated to the implementation of deep learning algorithms in hardware. As a case study, a CNN was trained by the Convolutional Architecture for Fast Feature Embedding (Caffe) framework, in order to classify 6 traffic-sign classes, achieving an average accuracy of about 89.8% on the German Traffic-Sign Recognition Benchmark (GTSRB) dataset, which contains trafficsigns images in complex scenarios. This CNN was implemented on a Zynq-7000 All- Programmable System-on-Chip (APSoC), achieving about 313 Frames Per Second (FPS) on 32x32-normalized images, with the APSoC consuming only 2.057W, while an embedded Graphics Processing Unit (GPU), in its minimum operation mode, consumes 10W. The proposed CNN reliability was investigated by random piled-up fault injection by emulation in the Programming Logic (PL) configuration bits of the APSoC, achieving 80.5% of reliability under Single-Bit-Upset (SBU) where both critical Silent Data Corruptions (SDCs) and time-outs were considered. Regarding the multiple faults, the proposed CNN reliability exponentially decreases with the number of piled-up faults. Hence, the proposed CNN reliability must be increased by using hardening techniques during the design flow.
6

On the Construction of an Automatic Traffic Sign Recognition System

Jonsson, Fredrik January 2017 (has links)
This thesis proposes an automatic road sign recognition system, including all steps from the initial detection of road signs from a digital image to the final recognition step that determines the class of the sign. We develop a Bayesian approach for image segmentation in the detection step using colour information in the HSV (Hue, Saturation and Value) colour space. The image segmentation uses a probability model which is constructed based on manually extracted data on colours of road signs collected from real images. We show how the colour data is fitted using mixture multivariate normal distributions, where for the case of parameter estimation Gibbs sampling is used. The fitted models are then used to find the (posterior) probability of a pixel colour to belong to a road sign using the Bayesian approach. Following the image segmentation, regions of interest (ROIs) are detected by using the Maximally Stable Extremal Region (MSER) algorithm, followed by classification of the ROIs using a cascade of classifiers. Synthetic images are used in training of the classifiers, by applying various random distortions to a set of template images constituting most road signs in Sweden, and we demonstrate that the construction of such synthetic images provides satisfactory recognition rates. We focus on a large set of the signs on the Swedish road network, including almost 200 road signs. We use classification models such as the Support Vector Machine (SVM), and Random Forest (RF), where for features we use Histogram of Oriented Gradients (HOG).
7

Fast Object Recognition in Noisy Images Using Simulated Annealing

Betke, Margrit, Makris, Nicholas 25 January 1995 (has links)
A fast simulated annealing algorithm is developed for automatic object recognition. The normalized correlation coefficient is used as a measure of the match between a hypothesized object and an image. Templates are generated on-line during the search by transforming model images. Simulated annealing reduces the search time by orders of magnitude with respect to an exhaustive search. The algorithm is applied to the problem of how landmarks, for example, traffic signs, can be recognized by an autonomous vehicle or a navigating robot. The algorithm works well in noisy, real-world images of complicated scenes for model images with high information content.
8

Real Time Traffic Sign Recognition System On Fpga

Irmak, Hasan 01 September 2010 (has links) (PDF)
In this thesis, a new algorithm is proposed for the recognition of triangular, circular and rectangular traffic signs and it is implemented on an FPGA platform. The system can recognize 32 different traffic signs with high recognition accuracy. In the proposed method, first the image is segmented into red and blue regions, and according to the area of the each segment, the dominant color is decided. Then, Laplacian of Gaussian (LoG) based edge detection is applied to the segmented image which is followed by Hough Transform for shape extraction. Then, recognition based on Informative Pixel Percentage (IPP) matching is executed on the extracted shapes. The Traffic Sign Recognition (TSR) system is implemented on Virtex 5 FX70T FPGA, which has an embedded PPC440 processor. Some modules of TSR algorithm are designed in the FPGA logic while remaining modules are designed in the PPC440 processor. Work division between FPGA and PPC440 is carried out considering their capabilities and shortcomings of FPGA and processor. Benefits of using an FPGA with an embedded processor are exploited to optimize the system.
9

Automated Enrichment of Global World View Information based on Car2X

Phothithiraphong, Thanaset 28 April 2016 (has links)
The purpose of this thesis is to develop the architecture to use the Car2X for observation the local traffic sign and displays it on the OpenStreetMap to provide more information of the road side to the driver. The proposed architecture of this thesis is to convert the traffic sign into the barcode and to be scanned by the barcode scanner and then wirelessly transfers the data to the web server to store the data and displays the traffic sign on the OpenStreetMap in the web browser. It uses two Raspberry Pi boards with CAN-Bus shields for transmitting the data on the CAN-Bus system in the car, a barcode scanner to scan the barcode, a GPS module to get its location, and a WiFi dongle to wirelessly send the data. The thesis also includes the camera to detect the traffic light using OpenCV and sends the GO or STOP command to the car. The results provide the OpenStreetMap with the traffic sign which helps the driver to realize the traffic sign on the road of the desired destination. However, the accuracy of GPS is not satisfied as well as the distance of the barcode scanning, therefore, this thesis suggests that includes the gps position in the barcode and uses the camera to detect the barcode for the improvement in the future.
10

干擾狀況下的交通標誌偵測與辨識

楊修銘, Yang,Hsiu-Ming Unknown Date (has links)
在不利的環境下做交通標誌的偵測與辨識是一件非常艱困的工作,無論在郊區或市區,複雜的環境、天候、陰影以及任何和光線有關的因素甚至是交通標誌遭到遮蔽都將使得偵測與辨識交通標誌變得相當困難。在本篇論文中,我們定義出較寬鬆的顏色分類(color thresholding)方法,配合一些交通標誌的特徵(如外形)來實作出召回率(Recall)較高的偵測系統,另外在辨識方面,最重要的是找出好的辨識特徵,因此我們利用離散餘弦轉換(discrete cosine transform)和奇異值分解(singular value decomposition)處理待辨識標誌擷取其特徵,並配合一些其他的交通標誌特徵,當作類神經網路(ANN)、naïve Bayes classifier等辨識方法的輸入,來幫助我們完成辨識的工作。目前實作出來的系統在有挑戰性的測試資料下有七成六左右的辨識率。 / Robust traffic sign recognition can be a difficult task if we aim at detecting and recognizing traffic signs in images captured under unfavorable environments. Complex background, weather, shadow, and other illumination-related problems may make it difficult to detect and recognize signs in the rural as well as the urban areas. In this thesis, I define a formula for color classification and apply other related features such as the shape of the traffic signs to implement the detection component that offers high recall rate. In traffic sign recognition, the most important thing is to get the effective features. I use discrete cosine transform and singular value decomposition to collect the invariant features of traffic signs that will not be severely interfered by disturbing environments. These invariant features can be used as the input to artificial neural networks or naïve Bayes models to achieve the recognition task. This system yields satisfactory performance about 76% recognition rate when I test them with very challenging data.

Page generated in 0.1152 seconds