1 |
縮小股價升降單位對實現波動率之影響 / Tick Size Reduction and Realized Volatility on the Taiwan Stock Exchange張皓雯, Chang, Hao Wen Unknown Date (has links)
本文以日內資料研究台灣證券交易所於2005年3月1日實施股價升降單位新制後,市場交易因子與股價報酬波動率的變化;延伸討論市場參與者對新訊息之反應,進而評估實施股價升降單位新制之成效。本文首先比較四種常用來衡量報酬波動率的方法,並從中挑選出最穩健的測度方式;接著藉此分析股價日報酬波動率與市場交易因子之間的關係;最後,由於日內股價報酬波動的軌跡呈現U型曲線,為突顯波動較劇烈之時段股價報酬波動率是否亦隨股價升降單位縮小而趨緩,故著眼交易日開盤後一小時及收盤前一小時,再次檢驗上述關係。實證結果支持股價升降單位縮小使實現波動率大幅降低且交易筆數密切影響股價報酬波動率,且不論在日資料與日內資料都呈現相似結論;並發現愈接近開、收盤的時間點,股價報酬波動率降低比例亦愈大,顯示升降單位新制達成政策目的。 / In this study, we address the impact of the tick size reduction on the Taiwan Stock Exchange on March 1, 2005. We propose to investigate the variations of trading activities and return volatility, discuss investors' behaviors to the new information and evaluate the tick size reduction by analyzing intraday data. First, we select the most robust volatility measure for our study from four commonly used ones. Second, we examine the relationship between daily return volatility and trading activities. Eventually, due to the commonly observed U-shaped pattern of intraday return volatility, we re-examine the intraday relation between return volatility and trading activities. Our empirical results based on the robust realized volatility confirm that both daily and intraday return volatility decline significantly after the tick size reduction, and number of trades is a prominent trading factor in explaining realized volatility. More interestingly, we observe that the percentage decrease in realized volatility is most pronounced for trading sessions near the beginning or the ending of each trading day. Overall, our empirical findings support the arguments for tick size reduction intended by policymakers.
|
2 |
以實現波動率估計投資組合風險值 / Value at Risk of Portfolio with Realized Volatility李承儒 Unknown Date (has links)
利用風險值作為投資組合的風險管理工具,必須考慮金融資產報酬率通常具有厚尾、高峰、波動叢聚以及資產間訊息與波動性的變化也會交互影響等現象;因此實證上通常以多變量GARCH模型作為估計投資組合變異數矩陣的方法。然而多變量GARCH模型卻存在有維度上的詛咒,當投資組合包含資產數增加時會加重參數估計上的困難度。另一種估計波動率的方法,稱為實現波動率,能比多變量GARCH模型更簡易地處理投資組合高維度的問題。本文即以實現波動率、BEKK多變量GARCH模型與CCC模型,並以中鋼、台積電、國泰金為研究對象,比較三種方法估計風險值的表現。而實證結果得到利用實現波動率確實適合應用在風險值的估計上,且在表現上有略勝一籌的現象。
|
3 |
資產配置,波動率與交易密集度 / Asset allocation, Volatility and Trading Intensity張炳善, Chang, Ping Shan Unknown Date (has links)
本文旨在探討具有捕捉交易密集度特性的波動率測度模型是否能幫助投資者改
善其資產配置的決策。因此,本文分別考量了利用兩種不同價格抽樣方式所計算
出來的實現波動率 (realized volatility) 模型: (1) 日曆時間抽樣法 (calendar time sampling scheme) 與 (2) 交易次數時間抽樣法 (transaction time sampling scheme)。相較於另一廣為應用的一般化自我迴歸條件異質變異 (Generalized Autoregressive
Conditional Heteroskedasticity) 模型而言,這兩種實現波動率模型的優點除了在於它們可以捕捉日內資產報酬率的動態變化之外,交易次數時間抽樣法更可以另外捕捉市場的交易密集度。因此利用交易次數間抽樣法所計算出的實現波動率相對提供給投資者較多的訊息。本文利用了West, Edison and Cho (1993) 所提出的資產組合期望效用模型衡量三種波動率測度的預測績效:(1) 實現波動率 - 日曆時間抽樣法 (2) 實現波動率 - 交易次數時間抽樣法 (3) 指數型一般化自我迴歸條件異質變異 (Exponential Generalized Autoregressive Conditional Heteroskedasticity)。我們的實證結果發現,只有在投資者風險趨避係數越小的條件下,此三種波動率測度模型兩兩之間才有較大的期望效用差距;另外,有趣的是,當市場存在異常的交易波動現象時,交易次數時間抽樣法下的實現波動率所產生的期望效用值總是不輸給另外兩種波動率測度模型的結果。 / This paper examines whether volatility measures that account for trading intensity would help investors make better decisions in their asset allocation. Specifically, we consider two versions of realized volatility (RV), namely, one (RV-C) constructed by regular calendar time sampling, and the other one (RV-T) constructed by transaction time sampling. Comparing to models in the GARCH family, both of these two RVs can capture intraday variations of asset return dynamics. In particular, the RV-T incorporates intraday trading intensity, and hence provides even more valuable information for investors. With the utility-based approach developed by West, Edison, and Cho (1993), we compare the predictive performance of RV-C, RV-T, and the EGARCH model in terms of utility generated with each of these three volatility measures. Our empirical results show that the three measures differ from each other mostly when investors are less risk-averse. Most interestingly, the time-deformed RV-T weakly dominates the RV-C and the EGARCH model when the markets are extremely volatile.
|
Page generated in 0.0217 seconds