1 |
巨災風險債券之計價分析 / Pricing Catastrophe Risk Bonds吳智中, Wu, Chih-Chung Unknown Date (has links)
運用傳統再保險契約移轉風險受限於承保能量的逐年波動,尤其自90年代起,全球巨災頻繁,保險人損失巨幅增加,承保能量急遽萎縮,基於巨災市場之資金需求,再保險轉向資本市場,預期將巨災風險移轉至投資人,促成保險衍生性金融商品之創新,本研究針對佔有顯著交易量的巨災風險債券進行分析,基於Cummins和Geman (1995)所建構巨災累積損失模型,引用Duffie 與Singleton (1999)於違約債券的計價模式,將折現利率表示為短期利率加上事故發生率及預期損失比例之乘積,並將債券期間延長至多年期,以符合市場承保的需求,應用市場無套利假設及平賭測度計價的方法計算合理的市場價值,巨災損失過程將分成損失發展期與損失確定期,以卜瓦松過程表示巨災發生頻率,並利用台灣巨災經驗資料建立合適之損失幅度模型,最後以蒙地卡羅方法針對三種不同型態的巨災風險債券試算合理價值,並具體結論所得的數值結果與後續之研究建議。 / Using traditional reinsurance treaties to transfer insurance risks are restrained due to the volatility of the underwriting capacity annually. Catastrophe risks have substantially increased since the early 1990s and have directly resulted significant claim losses for the insurers. Hence the insurers are pursuing the financial capacities from the capital market. Transferring the catastrophe risks to the investor have stimulated the financial innovation for the insurance industry. In this study, pricing issues for the heavily traded catastrophe risk bonds (CAT-bond) are investigated. The aggregated catastrophe loss model in Cummins and Geman (1995) are adopted. While the financial techniques in valuing the defaultable bonds in Duffie and Singleton (1999) are employed to determine the fair prices incorporating the claim hazard rates and the loss severity. The duration of the CAT-bonds is extended from single year to multiple years in order to meet the demand from the reinsurance market. Non- arbitrage theory and martingale measures are employed to determine their fair market values. The contract term of the CAT-bonds is divided into the loss period and the development period. The frequency of the catastrophe risk is modeled through the Poisson process. Taiwan catastrophe loss experiences are examined to build the plausible loss severity model. Three distant types of CAT-bonds are analyzed through Monte Carlo method for illustrations. This paper concludes with remarks regarding some pricing issues of CAT-bonds.
|
Page generated in 0.019 seconds