1 |
應用賽局理論評價選擇權陳韻竹 Unknown Date (has links)
本論文利用市場觀測的選擇權買價與賣價,將市場的交易行為描述為兩人零合賽局,其中參賽者為投資人與市場機制,分別建立雙方的最佳策略模型。假設標的資產到期日的價格為離散點且個數有限,當市場不存在套利機會,也就是投資人最佳策略時報償為零時,可利用賽局線性規劃模型導出隱含於市場價格的風險中立機率測度。此模型不須對標的資產價格的機率分配做任何假設,也不須計算波動度,就可利用資產價格的平賭性質,以還原的風險中立機率測度為選擇權作合理的定價。最後,以台指選擇權(TXO)為例,驗證本模型的評價能力,且再次證實資產價格的風險中立機率分佈與一般常假設的對數常態分佈有落差。
|
2 |
隨機利率下,跨通貨投資組合選擇權之定價與避險策略 / Pricing and Hedging Cross-Currency Portfolio Option with Stochastic Interest Rates王祥安, Wang , Hsiang-An Unknown Date (has links)
在WTO成立,各國國際化程度日益提高的同時,企業與個人進行跨國投資的情形也愈來愈普遍,跨國投資除了要考慮標的資產之報酬與波動性之外,尚須考量匯率變動所產生之風險與不確定性。當某一國外資產具有正向預期報酬率的同時,實現後的報酬率卻又不一定為正,正是因為匯率波動所產生的影響。又,傳統財務理論告訴我們,藉由增加投資組合中所有非完全正相關的資產個數可以有效的降低投資組合的非系統風險,因此投資人在進行投資時往往採用建構投資組合的方式取代持有少數資產的型態。然而,在建構跨通貨避險投資組合時,若是對於投資組合中的各項資產與外幣分別進行避險(分別利用衍生性商品避險),往往是費時、費力又不具有效率。因此,對於整個投資組合進行避險反而是一個比較好的方法,當投資組合價值發生變動時,可以即時對於各項資產部位與外幣分別做調整,遠較於對個別資產進行避險來的方便、快速且有效。 / In most cases, investment is made of building a portfolio rather than single asset. Therefore, it is necessary to develop techniques of valuing portfolio derivatives. Moreover, we consider a cross-currency portfolio that account for currency and interest rate risk. As interest rate is stochastic, we use Heath-Jarrow Morton (HJM) Approach to describe its dynamics. Applying Vorst (1992); Geman, Karoui and Rochet(1995), we derive the approximated close-form of the cross-currency portfolio option.
In HJM Approach, it is difficult to acquire hedge ratios of options. We apply another method to build a hedging portfolio. Then, we perform numerical simulations to test its hedging efficiency and sensitivity with respect to different variables.
|
3 |
巨災風險債券之計價分析 / Pricing Catastrophe Risk Bonds吳智中, Wu, Chih-Chung Unknown Date (has links)
運用傳統再保險契約移轉風險受限於承保能量的逐年波動,尤其自90年代起,全球巨災頻繁,保險人損失巨幅增加,承保能量急遽萎縮,基於巨災市場之資金需求,再保險轉向資本市場,預期將巨災風險移轉至投資人,促成保險衍生性金融商品之創新,本研究針對佔有顯著交易量的巨災風險債券進行分析,基於Cummins和Geman (1995)所建構巨災累積損失模型,引用Duffie 與Singleton (1999)於違約債券的計價模式,將折現利率表示為短期利率加上事故發生率及預期損失比例之乘積,並將債券期間延長至多年期,以符合市場承保的需求,應用市場無套利假設及平賭測度計價的方法計算合理的市場價值,巨災損失過程將分成損失發展期與損失確定期,以卜瓦松過程表示巨災發生頻率,並利用台灣巨災經驗資料建立合適之損失幅度模型,最後以蒙地卡羅方法針對三種不同型態的巨災風險債券試算合理價值,並具體結論所得的數值結果與後續之研究建議。 / Using traditional reinsurance treaties to transfer insurance risks are restrained due to the volatility of the underwriting capacity annually. Catastrophe risks have substantially increased since the early 1990s and have directly resulted significant claim losses for the insurers. Hence the insurers are pursuing the financial capacities from the capital market. Transferring the catastrophe risks to the investor have stimulated the financial innovation for the insurance industry. In this study, pricing issues for the heavily traded catastrophe risk bonds (CAT-bond) are investigated. The aggregated catastrophe loss model in Cummins and Geman (1995) are adopted. While the financial techniques in valuing the defaultable bonds in Duffie and Singleton (1999) are employed to determine the fair prices incorporating the claim hazard rates and the loss severity. The duration of the CAT-bonds is extended from single year to multiple years in order to meet the demand from the reinsurance market. Non- arbitrage theory and martingale measures are employed to determine their fair market values. The contract term of the CAT-bonds is divided into the loss period and the development period. The frequency of the catastrophe risk is modeled through the Poisson process. Taiwan catastrophe loss experiences are examined to build the plausible loss severity model. Three distant types of CAT-bonds are analyzed through Monte Carlo method for illustrations. This paper concludes with remarks regarding some pricing issues of CAT-bonds.
|
4 |
還原風險中立機率測度的雙目標規劃模型 / Recovering Risk-Neutral Probability via Biobjective Programming Model廖彥茹 Unknown Date (has links)
本論文提出利用機率平賭性質由選擇權市場價格還原風險中立機率測度的雙目標規劃模型。假設對應同一標的資產且不同履約價的選擇權均為歐式選擇權,到期時標的資產的狀態為離散點且個數有限。若市場不存在套利機會時,建構出最小化離差總和及最大化平滑的雙目標規劃模型。將此雙目標規劃模型利用權重法轉換成單一目標之非線性模型,即可還原風險中立機率測度,並利用此風險中立機率測度評價選擇權的公平價格。最後,我們以台指選擇權(TXO)為例,驗證此模型的評價能力。 / This thesis proposes a biobjective nonlinear programming model to derive risk-neutral probability distribution of underlying asset. The method are used to choose probabilities that minimize the deviation between the observed price and the theoretical price as well as maximize the smoothness of the resulting probabilities. A weighting method is used to covert the model into a single objective model. Given a non-arbitrage observed option price, a risk-neutral probability distribution consistent with the observed option can be recovered by the model. This risk-neutral probability is then utilized to evaluate the fair price of options. Finally, an empirical study applying to Taiwan’s market is given to verify the pricing ability of this model.
|
5 |
由選擇權市場價格建構具一致性之評價模型 / Building a Consistent Pricing Model from Observed Option Prices via Linear Programming劉桂芳, Liu, Kuei-fang Unknown Date (has links)
本論文研究如何由觀測的選擇權市場價格還原風險中立機率測度(等價平賭測度)。首先建構選擇權投資組合的套利模型,其中假設選擇權為單期,到期日時的狀態為離散點且個數有限,並且對應同一標的資產且不同履約價格。若市場不存在套利機會時,可使用拉格朗日乘數法則將選擇權套利模型導出拉格朗日乘子的可行性問題。將可行性問題作為限制式重新建構線性規劃模型以還原風險中立機率測度,並且利用此風險中立機率測度評價選擇權的公正價格。最後,我們以台指選擇權(TXO)為例,驗證此模型的評價能力。 / This thesis investigates how to recover the risk-neutral probability (equivalent martingale measure) from observed market prices of options. It starts with building an arbitrage model of options portfolio in which the options are assumed to be in one-period time, finite discrete-states, and corresponding to the same underlying asset with different strike prices. If there is no arbitrage opportunity in the market, we can use Lagrangian multiplier method to obtain a Lagrangian multiplier feasibility problem from the arbitrage model. We employ the feasibility problem as the constraints to construct a linear programming model to recover the risk-neutral probability, and utilize this risk-neutral probability to evaluate the fair price of options. Finally, we take TXO as an example to verify the pricing ability of this model.
|
Page generated in 0.0226 seconds