• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

應用賽局理論評價選擇權

陳韻竹 Unknown Date (has links)
本論文利用市場觀測的選擇權買價與賣價,將市場的交易行為描述為兩人零合賽局,其中參賽者為投資人與市場機制,分別建立雙方的最佳策略模型。假設標的資產到期日的價格為離散點且個數有限,當市場不存在套利機會,也就是投資人最佳策略時報償為零時,可利用賽局線性規劃模型導出隱含於市場價格的風險中立機率測度。此模型不須對標的資產價格的機率分配做任何假設,也不須計算波動度,就可利用資產價格的平賭性質,以還原的風險中立機率測度為選擇權作合理的定價。最後,以台指選擇權(TXO)為例,驗證本模型的評價能力,且再次證實資產價格的風險中立機率分佈與一般常假設的對數常態分佈有落差。
2

還原風險中立機率測度的雙目標規劃模型 / Recovering Risk-Neutral Probability via Biobjective Programming Model

廖彥茹 Unknown Date (has links)
本論文提出利用機率平賭性質由選擇權市場價格還原風險中立機率測度的雙目標規劃模型。假設對應同一標的資產且不同履約價的選擇權均為歐式選擇權,到期時標的資產的狀態為離散點且個數有限。若市場不存在套利機會時,建構出最小化離差總和及最大化平滑的雙目標規劃模型。將此雙目標規劃模型利用權重法轉換成單一目標之非線性模型,即可還原風險中立機率測度,並利用此風險中立機率測度評價選擇權的公平價格。最後,我們以台指選擇權(TXO)為例,驗證此模型的評價能力。 / This thesis proposes a biobjective nonlinear programming model to derive risk-neutral probability distribution of underlying asset. The method are used to choose probabilities that minimize the deviation between the observed price and the theoretical price as well as maximize the smoothness of the resulting probabilities. A weighting method is used to covert the model into a single objective model. Given a non-arbitrage observed option price, a risk-neutral probability distribution consistent with the observed option can be recovered by the model. This risk-neutral probability is then utilized to evaluate the fair price of options. Finally, an empirical study applying to Taiwan’s market is given to verify the pricing ability of this model.
3

由選擇權市場價格建構具一致性之評價模型 / Building a Consistent Pricing Model from Observed Option Prices via Linear Programming

劉桂芳, Liu, Kuei-fang Unknown Date (has links)
本論文研究如何由觀測的選擇權市場價格還原風險中立機率測度(等價平賭測度)。首先建構選擇權投資組合的套利模型,其中假設選擇權為單期,到期日時的狀態為離散點且個數有限,並且對應同一標的資產且不同履約價格。若市場不存在套利機會時,可使用拉格朗日乘數法則將選擇權套利模型導出拉格朗日乘子的可行性問題。將可行性問題作為限制式重新建構線性規劃模型以還原風險中立機率測度,並且利用此風險中立機率測度評價選擇權的公正價格。最後,我們以台指選擇權(TXO)為例,驗證此模型的評價能力。 / This thesis investigates how to recover the risk-neutral probability (equivalent martingale measure) from observed market prices of options. It starts with building an arbitrage model of options portfolio in which the options are assumed to be in one-period time, finite discrete-states, and corresponding to the same underlying asset with different strike prices. If there is no arbitrage opportunity in the market, we can use Lagrangian multiplier method to obtain a Lagrangian multiplier feasibility problem from the arbitrage model. We employ the feasibility problem as the constraints to construct a linear programming model to recover the risk-neutral probability, and utilize this risk-neutral probability to evaluate the fair price of options. Finally, we take TXO as an example to verify the pricing ability of this model.

Page generated in 0.029 seconds