1 |
整體經驗模態分解在台灣期貨市場與選舉預測市場的應用 / Applications of ensemble empirical mode decomposition to future and election prediction markets in Taiwan鄭緯暄 Unknown Date (has links)
金融市場常常受到政治、經濟與社會環境等因素所影響,所得到價格為眾多變數交互作用的結果,包含了許多雜訊。本文引進一套數據處理方法「整體經驗模態分解」(Ensemble Empirical Mode Decomposition,EEMD)來分析「期貨市場」以及「預測市場」。第一個實證利用EEMD處理台股期貨,分析對台股指數的解釋能力,並同時與原始台股期貨預測台股指數,比較預測結果;第二個實證利用EEMD來分析預測市場,判別是否能有效的消除雜訊,準確預測選舉結果。
第一個實證結果發現,EEMD能有效地過濾期貨市場的雜訊,另外,在最後到期日前十二天或者是前九天,以週期為6.5日經EEMD處理的台股期貨對台股指數的預測較原始台股期貨預測準確;第二個實證結果指出,直接利用EEMD處理預測市場得到的長期趨勢「剩餘訊號」(Residue)來預測選舉並無優於原始預測市場,主因為預測市場參與者不只在乎長期趨勢,亦在乎短期事件的衝擊,故直接利用剩餘訊號預測選舉結果會有所失真,而將剩餘訊號由低頻率之「本質模態函數」(Intrinsic Modes Function,IMF)合併至週期為6日與12日的IMF,得到了EEMD週趨勢價格,分成選前一天和選前十天的資料並與原始預測市場以及民調預測做比較,從不同的準則來看,發現以EEMD週趨勢價格來做選舉預測,準確度較原始預測市場與民調預測的結果更好。根據中選會2012年初選前對選罷法做成的解釋,未來事件交易所在選前十日亦須停止交易,我們可將EEMD運用在日後的選舉預測,把預測市場的合約價格以EEMD處理,應可提高選舉預測的準確度。 / The financial markets are usually affected by political, economic and social environment factors, and thus the volatilities of asset prices in these markets are subject to a lot of noises and shocks. To filter out noises and quantify shocks, this paper applies a data processing method, Ensemble Empirical Mode Decomposition (EEMD), and demonstrates its improved prediction to the futures and election prediction markets.
While the first empirical application shows that the EEMD effectively filters out the noises in the futures market, the second one indicates that the Taiwanese election prediction using EEMD “residue” is not as accurate as that by original data from the prediction market. The reason why the residue cannot serve as a good predictor is that the market participants consider not only the long-term trend, but also shocks, especially those right before the elections. We then attempt to predict the election outcomes by the week trend series processed by EEMD. The prediction by the week EEMD trend series turns out to be more accurate than that by the poll and original prediction market. Based on this study, we can apply the EEMD to the next election prediction and improve its accuracy.
|
Page generated in 0.0171 seconds