• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

小波理論於曲風辨識上之應用 / The Application of Wavelet Transform on Automatically Musical Genre Classification

陳彥名 Unknown Date (has links)
隨著科技的進步,網際網路已充斥在我們的生活之中。音樂也不再以硬體儲存的方式流傳(例如CD、黑膠唱片),而是轉變為數位音樂的方式,透由網路平台散播。許多數位音樂串流服務平台網站也如雨後春筍般誕生,例如iTunes、Spotify、Musicovery。加上文化水平的提升,音樂已是現代人生活之中,不可或缺的一部分。世界上的音樂難以計數,如何將音樂分門別類做好管理乃為現代商業應用的一個重要課題。因此,音樂曲風自動化辨識的技術確實為一個實用且難以迴避的課題。 過去在曲風自動化辨識已有許多研究,但內容不外乎音訊處理、頻譜轉換、特徵擷取、特徵降維、監督式學習機。在相同的模式下提出各種改良,或是全新的特徵擷取…諸如此類,而辨識率也達到了七成以上。本篇論文採用不同於以往的做法,將訊號進行頻譜轉換後層層降維,所得之訊號搭配LDA與決策樹進行辨識,最後去比較與分析離散餘弦轉換與小波轉換在辨識率上的優劣。我們發現搭配小波轉換與混合LDA及決策樹的方法,可以將音樂曲風之分辨率達到八成五以上。

Page generated in 0.0221 seconds