• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • 2
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

迴歸模型中自變數具有測量誤差時係數估計之探討

周幼珍 Unknown Date (has links)
No description available.
2

簡單線性迴歸模式中解釋變數具測量誤差下控制問題之研究

張文哲 Unknown Date (has links)
在解釋變數含測量誤差的簡單線性迴歸模式中,欲使第t+1期之產出Y達到某一目標值Y<sup>*</sup>,則必需控制第t+1期投入變數Z,若參數α,β為以知時,可以將其設定為θ=(Y<sup>*</sup>-α)/β。但當參數α,β為未知時,我們利用LSCE控制法則的設定方法,得到第t+1期設定的控制值Z<sub>t+1</sub>,而且在機率為1下,Z<sub>t+1</sub> 收斂至θ=(Y<sup>*</sup>-α)/β。而貝氏最佳控制法則部份則是由第t+1期的預測期望損失,找出使其為最小的Z值即是所應設定的第t+1期控制值Z<sub>t+1</sub>,並利用模擬結果來說明。
3

自變數有測量誤差的羅吉斯迴歸模型之序貫設計探討及其在教育測驗上的應用 / Sequential Designs with Measurement Errors in Logistic Models with Applications to Educational Testing

盧宏益, Lu, Hung-Yi Unknown Date (has links)
本論文探討當自變數存在測量誤差時,羅吉斯迴歸模型的估計問題,並將此結果應用在電腦化適性測驗中的線上校準問題。在變動長度電腦化測驗的假設下,我們證明了估計量的強收斂性。試題反應理論被廣泛地使用在電腦化適性測驗上,其假設受試者在試題的表現情形與本身的能力,可以透過試題特徵曲線加以詮釋,羅吉斯迴歸模式是最常見的試題反應模式。藉由適性測驗的施行,考題的選取可以依據不同受試者,選擇最適合的題目。因此,相較於傳統測驗而言,在適性測驗中,題目的消耗量更為快速。在題庫的維護與管理上,新試題的補充與試題校準便為非常重要的工作。線上試題校準意指在線上測驗進行中,同時進行試題校準。因此,受試者的能力估計會存在測量誤差。從統計的觀點,線上校準面臨的困難,可以解釋為在非線性模型下,當自變數有測量誤差時的實驗設計問題。我們利用序貫設計降低測量誤差,得到更精確的估計,相較於傳統的試題校準,可以節省更多的時間及成本。我們利用處理測量誤差的技巧,進一步應用序貫設計的方法,處理在線上校準中,受試者能力存在測量誤差的問題。 / In this dissertation, we focus on the estimate in logistic regression models when the independent variables are subject to some measurement errors. The problem of this dissertation is motivated by online calibration in Computerized Adaptive Testing (CAT). We apply the measurement error model techniques and adaptive sequential design methodology to the online calibration problem of CAT. We prove that the estimates of item parameters are strongly consistent under the variable length CAT setup. In an adaptive testing scheme, examinees are presented with different sets of items chosen from a pre-calibrated item pool. Thus the speed of attrition in items will be very fast, and replenishing of item pool is essential for CAT. The online calibration scheme in CAT refers to estimating the item parameters of new, un-calibrated items by presenting them to examinees during the course of their ability testing together with previously calibrated items. Therefore, the estimated latent trait levels of examinees are used as the design points for estimating the parameter of the new items, and naturally these designs, the estimated latent trait levels, are subject to some estimating errors. Thus the problem of the online calibration under CAT setup can be formulated as a sequential estimation problem with measurement errors in the independent variables, which are also chosen sequentially. Item Response Theory (IRT) is the most commonly used psychometric model in CAT, and the logistic type models are the most popular models used in IRT based tests. That's why the nonlinear design problem and the nonlinear measurement error models are involved. Sequential design procedures proposed here can provide more accurate estimates of parameters, and are more efficient in terms of sample size (number of examinees used in calibration). In traditional calibration process in paper-and-pencil tests, we usually have to pay for the examinees joining the pre-test calibration process. In online calibration, there will be less cost, since we are able to assign new items to the examinees during the operational test. Therefore, the proposed procedures will be cost-effective as well as time-effective.
4

自變數有誤差的邏輯式迴歸模型:估計、實驗設計及序貫分析 / Logistic regression models when covariates are measured with errors: Estimation, design and sequential method

簡至毅, Chien, Chih Yi Unknown Date (has links)
本文主要在探討自變數存在有測量誤差時,邏輯式迴歸模型的估計問題,並設計實驗使得測量誤差能滿足遞減假設,進一步應用序貫分析方法,在給定水準下,建立一個信賴範圍。 當自變數存在有測量誤差時,通常會得到有偏誤的估計量,進而在做決策時會得到與無測量誤差所做出的決策不同。在本文中提出了一個遞減的測量誤差,使得滿足這樣的假設,可以證明估計量的強收斂,並證明與無測量誤差所得到的估計量相同的近似分配。相較於先前的假設,特別是證明大樣本的性質,新增加的樣本會有更小的測量誤差是更加合理的假設。我們同時設計了一個實驗來滿足所提出遞減誤差的條件,並利用序貫設計得到一個更省時也節省成本的處理方法。 一般的case-control實驗,自變數也會出現測量誤差,我們也證明了斜率估計量的強收斂與近似分配的性質,並提出一個二階段抽樣方法,計算出所需的樣本數及建立信賴區間。 / In this thesis, we focus on the estimate of unknown parameters, experimental designs and sequential methods in both prospective and retrospective logistic regression models when there are covariates measured with errors. The imprecise measurement of exposure happens very often in practice, for example, in retrospective epidemiology studies, that may due to either the difficulty or the cost of measuring. It is known that the imprecisely measured variables can result in biased coefficients estimation in a regression model and therefore, it may lead to an incorrect inference. Thus, it is an important issue if the effects of the variables are of primary interest. When considering a prospective logistic regression model, we derive asymptotic results for the estimators of the regression parameters when there are mismeasured covariates. If the measurement error satisfies certain assumptions, we show that the estimators follow the normal distribution with zero mean, asymptotically unbiased and asymptotically normally distributed. Contrary to the traditional assumption on measurement error, which is mainly used for proving large sample properties, we assume that the measurement error decays gradually at a certain rate as there is a new observation added to the model. This kind of assumption can be fulfilled when the usual replicate observation method is used to dilute the magnitude of measurement errors, and therefore, is also more useful in practical viewpoint. Moreover, the independence of measurement error and covariate is not required in our theorems. An experimental design with measurement error satisfying the required degenerating rate is introduced. In addition, this assumption allows us to employ sequential sampling, which is popular in clinical trials, to such a measurement error logistic regression model. It is clear that the sequential method cannot be applied based on the assumption that the measurement errors decay uniformly as sample size increasing as in the most of the literature. Therefore, a sequential estimation procedure based on MLEs and such moment conditions is proposed and can be shown to be asymptotical consistent and efficient. Case-control studies are broadly used in clinical trials and epidemiological studies. It can be showed that the odds ratio can be consistently estimated with some exposure variables based on logistic models (see Prentice and Pyke (1979)). The two-stage case-control sampling scheme is employed for a confidence region of slope coefficient beta. A necessary sample size is calculated by a given pre-determined level. Furthermore, we consider the measurement error in the covariates of a case-control retrospective logistic regression model. We also derive some asymptotic results of the maximum likelihood estimators (MLEs) of the regression coefficients under some moment conditions on measurement errors. Under such kinds of moment conditions of measurement errors, the MLEs can be shown to be strongly consistent, asymptotically unbiased and asymptotically normally distributed. Some simulation results of the proposed two-stage procedures are obtained. We also give some numerical studies and real data to verify the theoretical results in different measurement error scenarios.

Page generated in 0.0192 seconds