1 |
基於貼文分享之臉書粉絲頁關聯性分析 / Exploring the Relationships between Facebook Pages via Post Sharing張瑋庭, Chang, Wei Ting Unknown Date (has links)
隨著網路科技的進步,線上社群網站已成為許多人快速分享資訊的新興平台。在所有社群網站中,Facebook為目前市佔率最高的網站,而粉絲頁在Facebook上擔任了重要的訊息傳播角色。粉絲頁就像個人新聞台一樣,站主可對其所屬粉絲發送訊息,進行線上溝通。此外,粉絲頁間也可透過分享轉發貼文的方式,使得各粉絲頁的廣大粉絲群皆能透過這樣的分享行動,快速接收到相關訊息,進而產生一傳十,十傳百的社群影響力。在特殊公共事件發生時,這種分享行為更為普遍。
本研究即以粉絲頁間的貼文分享為出發點,尋找公共事件發生時,粉絲頁間的透過分享而產生的關聯性。為了驗證此一論點之可行性,我們設計與實作了一套「臉書粉絲頁貼文分享關聯性分析系統(Posts Sharing Analyzer of Facebook Pages Relationships) 」,讓使用者可以針對其關注之公共事件設定種子粉絲頁及指定資料蒐集期間及相關參數。系統會透過Facebook公司提供的應用程式介面自動蒐集種子粉絲頁指定期間資料。每一次資料蒐集完成後系統會自動分析是否具有符合使用者指定條件的新粉絲頁,並將之加入種子粉絲頁的行列。透過滾雪球的方式,逐次推導出完整的粉絲頁關聯性。
本研究特別以太陽花學運期間相關粉絲頁作為實驗對象,透過我們的系統分析種子粉絲頁裡的分享貼文,逐次找出多個性質相近的粉絲頁,為日後進一步建立粉絲頁分享關聯性的探討奠定了良好的基礎。
|
2 |
臉書粉絲頁超連結分析系統 / A Hyperlink Analyzer for Facebook Pages李燕宜, Lee, Yen I Unknown Date (has links)
近年來隨著網際網路快速發展和社群網站的盛行,社群網站已成為許多名人、明星、公司、機關團體等與一般使用者溝通的新管道,其中很常見的就是透過建立臉書(Facebook)粉絲頁的方式來發佈消息更新狀況,一般使用者可藉由臉書平台來快速獲取名人動態或產品資訊等與其他網友之評論與意見,透過網路社群經營與粉絲頁建立已成為許多名人、公司企業與團體進行行銷、發表意見與粉絲互動的重要管道。
不僅於此,當重大公共事件發生時,許多臉書粉絲頁也會成為訊息與意見傳播的重要管道,所以許多傳播研究學者紛紛投入研究粉絲頁所發佈的貼文內容與來源,其中一個重點就是粉絲頁貼文所引用的外部網站內容。本論文針對轉發超連結的貼文以及大量貼文內含的超連結作處理,透過網址擷取和網址還原技術(URL unshorten)的應用加以分析統計,以供傳播研究學者快速了解粉絲頁貼文內容分布狀況,並藉此了解在不同情境下的社交媒體策略以及與粉絲之間的互動關係。另外為優化本系統效能,對於排程分析工作中提出並導入了「排程資料處理機制」,可顯著降低重覆分析貼文的次數,以提升資料分析的效率。 / Nowadays, social networking sites have become the new media for many celebrities, groups and business to communicate in societies and worldwide. Many celebrities, groups and business post their new status through Facebook fan pages and users can get status about celebrities or product information through Facebook immediately. Creating a Facebook fan page is an amazing way to promote business and build closer relationship with audiences and customers.
Besides, during the outbreak a public event, many fan pages would become important sources of news and information dissemination. Thus, many Humanities and Social Sciences scholars are eager to investigate the sources and contents of posts in fan pages. In particular, many posts contain hyperlinks pointing to outside news or information sources. This thesis design and implement a fan page content analyzer, focusing on hyperlinks analysis. By parsing URLs and URL unshortening, our tool offers hyperlink analysis for scholars to get quick overview about fan page feeds and to understand how they cite news or information from various sources. In addition, our tool is equipped with an aggregated data sharing mechanism to avoid parsing redundant feeds, thus being able to improve the performance of the tool.
|
3 |
Facebook社群人脈網絡與粉絲頁推薦之研究 / The Study of Recommendation on Social Connections and Fan Pages on Facebook曾子洋, Tseng, Tzu Yang Unknown Date (has links)
Facebook自從在台灣推出以來,已有超過一千三百萬的使用者帳號,是最熱門的社群網站,其中蘊含了龐大的使用者資料。從使用者學歷、工作經歷和喜歡的粉絲頁中可以一定程度上地判斷出使用者的背景與喜好,若能利用分析過的資訊將使用者分群,以供交友或導向到可能喜歡的粉絲頁,就能開發潛在客戶進而掌握商機。
本研究旨在完成一個線上系統,透過Facebook上可供擷取個人的資料:學歷、工作經歷以及喜歡的粉絲頁等資訊,針對這些量化過的資訊,經Kmeans將使用者分群分類,藉以作為協同過濾式推薦。目前實驗結果將有效個人資料4417筆進行分群,以使用者喜歡的粉絲頁比例(本研究整合成48種)加上工作經歷與學歷,最終分成10群,以作為交叉推薦之憑據和延伸研究。研究過程分實驗組與對照組,實驗組是本研究推薦的10筆粉絲頁,也就是使用者與所屬群集質心比例相差較多的粉絲頁類型;對照組則是選取使用者與母體中有較多比例差距的10筆,以證明本研究的推薦模型有效。
最後由使用者針對兩組推薦結果進行滿意度評分之比較,總共收回使用者回饋68筆,實驗組與對照組的平均推薦滿意度分數分別為0.5743、0.4268,對兩者作信心水準為95%的t檢定,結果為有充分證據支持實驗組大於對照組,可證明本研究對於推薦準確性的幫助,達成本研究目的。
由此實驗可以確定在Facebook上以使用者屬性為基礎的粉絲頁與人脈推薦是有意義與價值的,也說明真實數據能應用在社群網站的研究。希冀本研究的結果能帶動其他社群網站研究朝使用真實數據去分析佐證,讓社群網站的研究結果能更貼近使用者的真實行為。 / Facebook is one of the most popular social websites in Taiwan, and it has over 13 million accounts with lots of user data. One can tell a user’s background and preference by his education, work experience, and preferred fan pages. If we direct the right user to the right fan pages by analyzing information and clustering users through recommendation or personal connections, we will be able to reach potential customers and to further business opportunities.
The goal of this study is to complete an online system to assume collaborative fan page recommendation. Base on users’ education degree, work experience and preferred fan pages, users’ background. Then use the Kmeans algorithm to cluster quantified personal information to recommend fan pages and social relationships. Currently, the result of the experiment shows 10 clusters, which contain 4417 users, and we use it as a foundation of crossing recommendation. To prove the effect of this study, we divide study into two groups, an experimental group and control group. The former one represents recommended top 10 fan pages that include the fan page types with highest difference of percentage between user’s attributes and cluster centroid; the latter one represents top 10 fan pages that include the fan page types with highest difference of percentage between users’ attributes and proportion respectively.
Finally, we use users score satisfaction for each group to compare. There are 68 pieces of feedback, and the average satisfaction scores of the experimental group and the control group are 0.5743 and 0.4268, respectively. On both a confidence level of 95% for t-test, the result shows there is more sufficient evidence to support the satisfaction of experimental group than the control group. We can prove accuracy for recommendation to achieve the goal in this study.
This experiment determines not only the fan page recommendation based on user attributes on Facebook is meaningful and valuable, but also shows real data can be used in social networking studies. We hope the results of this study can lead other social networking studies to analyze with real users’ data in order to make future study on social networking better reflect real users’ behavior.
|
Page generated in 0.0198 seconds