• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

一個組合等式的證明 / A Proof of Combinatorial Identity

陳建霖, Chen, Chien-Lin Unknown Date (has links)
在這篇論文中,我們主要是研究一個組合等式如下:∑_(i=0)^n▒∑_(j=0)^i▒〖C(n,i)C(n+1,j)=?〗 在解這個等式時,我們將不使用一般的計算方式:而採用了建構一個對射函數(bijective function)的方法,進而得到上面等式的解。 接著我們推廣此等式為∑_(i=0)^n▒∑_(j=0)^i▒〖C(n,i)C(n+m,j)=?〗時,我們仍將繼續利用此函數是一對一的特性,為此組合等式求得通解如下,來完成這篇論文。∑_(i=0)^n▒∑_(j=0)^i▒〖C(n,i)C(n+m,j)=2^(2n+m-1)-〗 ∑_(i=0)^n▒∑_(j=1)^(m-1)▒C(n,i)C(n+m-1,i+j) / In this paper, we will mainly study a combinatorial identity, as the following:∑_(i=0)^n▒∑_(j=0)^i▒〖C(n,i)C(n+1,j)=?〗. When solving this identity, we will not use common calculation. Instead, we will build a method of bijective function in order to obtain the solution to the above identity. To finish this paper, we will continue to generalize this identity as ∑_(i=0)^n▒∑_(j=0)^i▒〖C(n,i)C(n+m,j)=?〗 Then we will be able to use 1-1 property of this function as to get the following solution to the combinatorial identity:∑_(i=0)^n▒∑_(j=0)^i▒〖C(n,i)C(n+m,j)=2^(2n+m-1)-〗 ∑_(i=0)^n▒∑_(j=1)^(m-1)▒C(n,i)C(n+m-1,i+j)
2

一個二項等式的證明 / A Proof of a Binomial Identity

何柏翰 Unknown Date (has links)
本篇論文是先對一個特定的組合等式分別給予代數證明及組合論證,接著對於組合論證中所考慮的問題,將情形推廣至更一般化,先將原本考慮每隊兩人的情況改為考慮每隊r人(推廣一),再將每隊只能派出一人的情況改為每隊皆能派出s人(推廣二),並導出在不同情況下的新的組合等式

Page generated in 0.0156 seconds