1 |
選擇權交易策略的整數線性規劃模型 / Option Trading Strategies with Integer Linear Programming楊靜宜 Unknown Date (has links)
投資者面對到期日相同的一序列不同履約價格的選擇權時,應如何建立最佳的組合交易策略,這個問題雖已有許多標準的交易公式可依循,但這些標準的交易策略無法全面涵蓋複雜多變的組合策略。本論文提出整數線性規劃模型用來建立選擇權的最佳交易策略。模型針對到期日相同的買權、賣權如何買賣的組合,建立最佳交易策略。若我們預期在到期日時,標的股價將會落在某一範圍內,則我們可修改原來的規劃模型配合此項預期,以尋求最佳的交易策略。最後,我們以Ericsson的選擇權為例,驗証本模型的效能。 / The problem of how to construct the optimal combination trading strategy for investors when they face a series of options of different exercise prices on the same maturity date can be solved by many standard trading rules. Yet these standard trading rules cannot completely cover the complex and highly changeable combination strategy. This thesis proposes an integer linear programming (ILP) model to construct the optimal trading strategy for option portfolio selection. This model focuses on constructing the optimal strategy for an option portfolio of call- and put-options on the same maturity date. Given the investor's belief of the stock price, we also provide an extended ILP model to include this belief. Finally, an empirical study will be presented by using the ILP model applied to the Ericsson's call and put options.
|
2 |
考慮交易成本的選擇權交易策略 / Option Trading Strategies with Transaction Costs陳明瑩, Chen, Ming-ying Unknown Date (has links)
投資者面對到期日相同的ㄧ序列不同履約價格的選擇權,已有許多文獻提出如何建立選擇權最佳投資組合,但模型中均未考慮交易成本。選擇權在實際市場的交易過程中,投資者所支付的手續費與賦稅即為選擇權的交易成本。本論文針對買賣到期日相同但不同履約價格的買權與賣權如何組合,提出考慮交易成本的整數線性規劃模型,建立選擇權最佳交易策略。我們不考慮股價變動的機率分配型態,延伸楊靜宜 (2004)所建立之整數線性規劃模型和Liu與Liu (2006)的大中取小模型,建構考慮比例制、固定制與混合制交易成本之整數線性規劃模型。最後,我們以台指選擇權(TXO)為例,驗證模型的效能。
關鍵字:交易成本,選擇權交易策略,整數線性規劃,選擇權套利機會。 / There are many researchers focus on constructing the optimal strategies and propose integer linear programming (ILP) for a series of options which are on the same maturity date with different strike price, but they neglect transaction costs in their models. The transaction costs of options are the handling charge and taxes which investors should pay for trading in the market. The thesis proposes an ILP with transaction costs to construct the optimal strategy for an option portfolio of call- and put- options on the same maturity date with different strike price. We leave the distribution of the variety of stock price out of consideration and extend Yang’s (2004) model and Liu & Liu’s (2006) min-max regret model to construct ILP with proportional, fixed, and mixed transaction costs. Finally, we take the trading data of TXO as an empirical study to test and verify the efficiency of our models.
Key words: transaction costs, option trading strategies, integer linear programming, option arbitrage opportunities.
|
Page generated in 0.0134 seconds