• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

運用黑板架構發展智慧型決策支援系統之解釋功能-以授信審查為例 / Developing an explantaion facility for intelligent decision support systems using blackboard architecture - A loan evaluation example

連柏偉, Lein, Boe Wei Unknown Date (has links)
智慧型決策支援系統(Intellignet Decision Support Systems)的特點是可以同時處理定性和定量資料於同一個系統中,以同時執行各種知識推論及數量模式之運算。黑板架構(Blackboard Architecture)的做法是將決策支援求解過程的資料、模式和知識運用情形記錄於一共同工作區─稱之為黑板(Blackboard),將模式及知識記錄在所謂的知識源(Knowledge Sources)中,並提供較有彈性之控制機制,應可提供較佳的解釋功能。以黑板架構為基礎的智慧型系統多應用在科學及工程方面,在管理方面卻寥寥無幾;管理問題多半屬於半結構性或非結構性,良好的解釋應為智慧型決策系統之重要功能。本研究擬就銀行業之授信審查做為本系統之專業領域知識(Domain Knowledge),運用黑板架構中的階層化問題表現方式及模組化知識源分類之特性,建立提供完善解釋功能之智慧型授信決策支援系統。 / Incorporating artificial intelligence (AI) technique is critical to improve the functionality of decision support systems. Explanation function for consultation-based systems has been emphasized in the literature and should be considered important in developing intelligent decision support systems. Blackboard architecture can support a well-organized explanation facility due to its structurization of problem solving space, modularization of domain knowledge, and flexibility of reasoning control. Applying blackboard systems to managerial domain gets attention recently. Since most managerial consultation problems are unstructured or semi-structured, good explanation facility should be able to enhance the consultation effectiveness. The thesis investigates the potential of developing an explanation facility on the blackboard architecture using the loan evaluation as an example. During the interactive consultation process, the system can answer questions such as "What?", "Why?", "How?", and "Where?" with a friendly user interface. In terms of contribution, the inclusion of explanation facility can potentially increase the willingness and confidence of decision makers in using intelligent decision support systems. On the other hand, applying the graphic user interface to the development of explanation facility based on the blackboard architecture can make the reasoning process transparent and enhance the acceptance of this AI technique to managerial problem solving.

Page generated in 0.0254 seconds