• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

台灣八大類股價量關係 / Price-Volume Relation of Taiwan Industrial Indices

杜芸菩, Tu, Yun Pu Unknown Date (has links)
本文以臺灣八大類股指數結合分量迴歸模型進行價量關係研究。有別於過去文獻多使用大盤指數進行分析,本文將以產業類股指數作為研究目標。實證結果顯示 : 「價量背離」與「價量齊揚」的效果同時存在於臺灣股市各個類股的價量關係中,且後者的效果普遍高於前者;而在八個產業類股中,尤以金融業在兩側分量的效果大於其他產業。另外,在相同的交易機制下,並非所有產業的價量關係皆會受到漲跌幅限制的影響而改變。本文更進一步選用法人持股佔該類股市值比作為資訊不對稱之代理變數,結果發現資訊不對稱程度較高的產業,在價量齊揚時,法人持股比的係數為負,代表在市場出現正報酬時,會有抑制股價上揚的效果;反之,在負報酬時,會加深股價下挫的力道。 / This research examines the relation between stock return and trading volume of Taiwan’s eight industries using quantile regression model. Our empirical results show that, for most industry indices, both large positive returns and large negative returns are usually accompanied by a large trading volume, with the effect of large positive returns being stronger. Among all industries, the financial industry has the most significant effect in either situation. But for some industries, the price-volume relations change when returns approach the price limits. In addition, we also emphasize the impact of information asymmetry, using ownership share of institutional investors as the proxy variable. The results show that, in the situation of positive returns with large trading volume, the institutional trading variable will restrain stock price from continually rising. In contrast, in the situation of negative returns with large trading volume, the institutional effect will make the stock price overreact.
2

類股指數領先大盤抑或是大盤領先類股指數?–簡單周期判定法則之應用 / Can Industry Index predict TAIEX, or vice versa?–The application of a simple dating technique

陳怡瑄 Unknown Date (has links)
本文引用Pagan and Sossounovb(2003)針對Bry and Boschan(1971)景氣循環周期判定法修改後的法則,判定大盤與類股指數的牛市、熊市周期。將判定的周期結果畫成圖表,藉由簡單的圖表分析將可明確得知大盤周期與類股周期領先與落後的關係,並應用計量模型估計,找尋能夠顯著預測大盤周期變動方向的類股,或是檢驗大盤周期是否能夠預測類股周期方向;反之亦然。並且比較圖表分析與計量模型估計結果是否一致。 圖表分析與向量自我迴歸模型的實證結果一致,八大類股中,營建、金融、機電、塑化等四類股周期能夠顯著預測大盤周期走勢,其中以塑化類股最具預測能力;而大盤周期皆無法精準預測類股周期走勢。而羅吉斯迴歸模型結果也發現,營建、金融、機電、塑化等四類股周期能夠增加大盤周期走勢的預測機率;同樣的,大盤周期無法影響類股周期走勢的預測機率。

Page generated in 0.0214 seconds