1 |
探討大白鼠之風險選擇行為之神經機制 / Investigation of neural mechanisms of risky choice behavior in the rat楊仁豪, Yang, Jen Hau Unknown Date (has links)
「風險決策」行為非常普遍的存在於吾人之日常生活中,而選項所帶來的風險和獎勵是吾人進行決策時的重要考量因素。風險選擇的適當與否,對於個體的生存扮演著相當重要的角色。在以往的文獻中,對於決策的行為歷程已有所關注及探討,但對於風險選擇行為的神經生理機制迄今未明。本研究藉由大白鼠於T字迷津中,選擇確定之低酬賞或高不確定性之高酬賞的行為表現,進行風險選擇行為的探討。本研究中以兩項主要實驗,探討風險選擇行為之神經行為機制。實驗1a中,確定之低酬賞端固定呈現1顆食物粒,而高不確定性之高酬賞端則同時操弄酬賞物機率(50%、25%及12.5%)以及酬賞物的量(2、4及8顆),以系統性地檢驗期望值(0.5、1和2)於此風險選擇行為中扮演的角色。行為結果顯示當風險較低時,大白鼠會選擇高不確定性之高酬賞端;而風險較高時,則轉為選擇確定之低酬賞端。實驗1b中,系統性地施打不同劑量之安非他命,探討多巴胺系統在此風險選擇行為中之機制。實驗結果顯示施打安非他命後,大白鼠表現出相對地追求風險之行為,亦即選擇高不確定之高酬賞端之比例顯著高於控制組。實驗2中,藉由毀除大腦特定部位(依核、背外側之紋狀體、眶前額皮質、內側之前額皮質),檢驗風險選擇行為之神經基礎。毀除後之結果顯示,僅有依核受到毀除之大白鼠表現出相對地趨避風險之選擇行為。綜合以上結果,本研究建立之風險選擇行為與多巴胺有關,而依核在此行為歷程中扮演重要的調節角色。 / Many decisions people make every day involve uncertainty where both risks and rewards associated with each option need to be considered. Behavioral performance associated to risk-based choice appears wildly over the lifespan, and the fitness of risky choice behavior plays an important role in individual survival. Despite a growing body of research has focused to investigate the neurobiology of decision making, little is known about the neurobehavioral mechanisms of risky choice behavior. Based on a pilot work, this study used a T-maze to study decision under a probability-based risk in the rat. The subject was assessed on making choice to obtain either a large reward associated with risk of non-reward “empty” or a small reward ensured for every entry. Two experiments were conducted in this project to investigate neurobehavioral mechanisms of probabilistic risky choice behavior. In Experiment 1a, probabilistic risky choice behavior was systemically assessed under three expected values (0.5, 1.0, and 2.0) by manipulating the probabilities of reward presence (50%, 25%, and 12.5%) and the reward magnitude (2, 4, or 8 pellets) in the probabilistic high reward (PHR) arm. Behavioral data showed that the subject chose the probabilistic high reward in a lower risk condition but would shift to the choice of certain low reward (CLR) as the risk is increased. In Experiment 1b, the dose effects of amphetamine on this probabilistic risky choice task was tested to verify whether the dopaminergic mechanism was involved. Amphetamine, presumably activating brain dopamine systems, produced a relatively risk-seeking effect on the present behavioral task. In Experiment 2, the excitoneurotoxic lesion was conducted in the nucleus accumbens, the dorsolateral striatum, the orbitofrontal cortex, and the medial prefrontal cortex to examine the neural substrates for this probabilistic risky choice behavior. The results showed that the lesion of the nucleus accumbens significantly produced a relatively risk-averse effect on the present behavioral task, as compared to the lesions made on the other three brain areas. In conclusion, the probabilistic risky choice behavior established in the present study is dopamine dependent. And, the nucleus accumbens plays a major role of mediating this behavioral processing.
|
Page generated in 0.0164 seconds