• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

馬可夫轉換基礎下技術分析:七種國內外期貨的探討 / Technical analysis based on Markov regime switching model:seven internal and external futures

謝宛純 Unknown Date (has links)
雖然技術分析的爭議非常的多,在市場上卻仍然被廣泛應用,原因即是因為容易被理解且方便應用,不過當馬可夫轉換模型出現時,技術分析便面臨的挑戰。馬可夫轉換模型又稱為隨機分段趨勢模型(stochastic segmented trend model),預測方法也類似於技術分析,利用一段期間內的趨勢來判斷未來走勢。 本研究利用馬可夫轉換模型以及技術分析中相當受歡迎的移動平均轉換法相互作比較,研究標的則選擇國內的兩種期貨:臺股期貨與黃金期貨和國外的五種商品期貨:紐約黃金、布蘭特原油、芝加哥小麥、玉米和大豆共七種期貨,相互比較後,我們發現馬可夫轉換模型在樣本內的獲利績效比均線轉換法的績效要來得好,其中平滑推論又比濾嘴推論的績效好。 另外,馬可夫轉換模型在樣本外的績效並不亮眼,原因可能是估計參數的不穩定性過高,不過在臺灣黃金期貨的部分,樣本外表現也是非常的亮眼。
2

S&P500波動度的預測 - 考慮狀態轉換與指數風險中立偏態及VIX期貨之資訊內涵 / The Information Content of S&P 500 Risk-neutral Skewness and VIX Futures for S&P 500 Volatility Forecasting:Markov Switching Approach

黃郁傑, Huang, Yu Jie Unknown Date (has links)
本研究探討VIX 期貨價格所隱含的資訊對於S&P 500 指數波動度預測的解釋力。過去許多文獻主要運用線性預測模型探討歷史波動度、隱含波動度和風險中立偏態對於波動度預測的資訊內涵。然而過去研究顯示,波動度具有長期記憶與非線性的特性,因此本文主要研究非線性預測模型對於波動度預測的有效性。本篇論文特別著重在不同市場狀態下(高波動與低波動)的實現波動度及隱含波動度異質自我迴歸模型(HAR-RV-IV model)。因此,本研究以考慮馬可夫狀態轉化下的異質自我迴歸模型(MRS-HAR model)進行實證分析。 本研究主要目的有以下三點: (1) 以VIX期貨價格所隱含的資訊提升S&P 500波動度預測的準確性。(2) 結合風險中立偏態與VIX期貨的資訊內涵,進一步提升S&P 500 波動度預測的準確性。(3) 考慮狀態轉換後的波動度預測模型是否優於過去文獻的線性迴歸模型。 本研究實證結果發現: (1) 相對於過去的實現波動度及隱含波動度,VIX 期貨可以提供對於預測未來波動度的額外資訊。 (2) 與其他模型比較,加入風險中立偏態和VIX 期貨萃取出的隱含波動度之波動度預測模型,只顯著提高預測未來一天波動度的準確性。 (3) 考慮狀態轉換後的波動度預測模型優於線性迴歸模型。 / This paper explores whether the information implied from VIX futures prices has incremental explanatory power for future volatility in the S&P 500 index. Most of prior studies adopt linear forecasting models to investigate the usefulness of historical volatility, implied volatility and risk-neutral skewness for volatility forecasting. However, previous literatures find out the long-memory and nonlinear property in volatility. Therefore, this study focuses on the nonlinear forecasting models to examine the effectiveness for volatility forecasting. In particular, we concentrate on Heterogeneous Autoregressive model of Realized Volatility and Implied Volatility (HAR-RV-IV) under different market conditions (i.e., high and low volatility state). This study has three main goals: First, to investigate whether the information extracted from VIX futures prices could improve the accuracy for future volatility forecasting. Second, combining the information content of risk-neutral skewness and VIX futures to enhance the predictive power for future volatility forecasting. Last, to explore whether the nonlinear models are superior to the linear models. This study finds that VIX futures prices contain additional information for future volatility, relative to past realized volatilities and implied volatility. Out-of-sample analysis confirms that VIX futures improves significantly the accuracy for future volatility forecasting. However, the improvement in the accuracy of volatility forecasts is significant only at daily forecast horizon after incorporating the information of risk-neutral skewness and VIX futures prices into the volatility forecasting model. Last, the volatility forecasting models are superior after taking the regime-switching into account.
3

以變異數比率法檢定指數選擇權之買賣權平價理論——馬可夫狀態轉換模型之應用

秦秀琪 Unknown Date (has links)
本研究目的在於探討Put-Call Parity(PCP)所隱含的買權、賣權與標的資產間的價格變動關係。藉由探討PCP偏差程度的動態行為,推論若PCP的偏差為隨機漫步過程,則無法達到長期穩定,隱含PCP的廣義關係無法成立;反之,若PCP的偏差具有回歸平均特性,表示長期會達到穩定狀態,則PCP的廣義關係成立。 在研究方法上本文以變異數比率法檢定指數選擇權的PCP偏差是否為隨機漫步過程,採用隱含利率和實際無風險利率的差代表PCP的偏差程度,利用馬可夫轉換模型描繪PCP偏差的動態行為,並使用Gibbs Sampling演算法說明參數的不確定性。 本文以S&P500和DAX為研究標的,並探討股利不確定性是否影響PCP廣義關係,得到下列結論: 1、 對於S&P 500指數選擇權而言,不論是以日資料或週資料估計VR,S&P 500的PCP偏差都無法提供回歸平均的證據,隱含S&P 500的PCP廣義關係無法成立。 2、 對於DAX指數選擇權而言,檢定日資料的結果發現,DAX之PCP偏差在長期時(40~50日)有明顯的回歸平均的證據;而在檢定週資料時,使用原始資料法在90%信心水準下,不論取任何lag都可拒絕虛無假設,使用標準化資料則無法提供明顯的回歸平均證據。 3、 比較S&P 500和DAX,檢定日資料與週資料的結果都發現,DAX的p-value都比S&P 500小,並且S&P 500的PCP偏差都無法提供回歸平均的證據,而DAX有明顯回歸平均現象,隱含在消除股利的不確定性後,指數選擇權PCP的廣義關係式成立之證據較強烈。

Page generated in 0.0298 seconds