• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 4
  • 1
  • Tagged with
  • 5
  • 5
  • 5
  • 5
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

以高頻率日內資料驗證報酬率與波動度之因果關係-以台灣期貨市場為證 / Use high-frequency data measuring the relationship between returns and volatility with Taiwan futures market data

趙明威 Unknown Date (has links)
本篇論文的目的在驗證台股期貨報酬率與其波動度之間的相對應關係是由槓桿效果或是波動度回饋效果之因果關係所驅動,並且分別以日資料以及高頻率日內資料進行實證。實證結果發現在高頻率日內資料的應用下,能夠比日資料揭露出更詳細的波動度資訊,將報酬率與波動度間的對應關係描繪得更加明瞭。且在大多數資料期間內,同期下,台股期貨報酬率與其波動度之間會呈現負相關性,而負相關的程度會隨著報酬率遞延期數越長而逐漸遞減,因此可以發現報酬率與其波動度間呈現一個經由報酬率進而影響波動度的對應關係,與槓桿效果的因果關係雷同。最後,本文亦採用了常見的波動度預測模型,歷史模擬法、GARCH(1,1)模型、EGARCH(1,1)模型以及GJR-GARCH(1,1)模型,觀察這些波動度模型所預測出之波動度是否含有上述驗證的資訊意涵,並比較各波動度模型的預測能力,結果發現GJR-GARCH模型於樣本外期間所預測之波動度,其與報酬率之間不但具有槓桿效果的因果關係,且預測能力亦於四個波動度模型中表現最佳。
2

動態隱含波動度模型:以台指選擇權為例 / Dynamic Implied Volatility Functions in Taiwan Options Market

陳鴻隆, Chen,Hung Lung Unknown Date (has links)
本文提出一個動態隱含波動度函數模型,以改善一般隱含波動度函數難以隨時間的經過而調整波動度曲線且無法描述資料的時間序列特性等缺點。本文模型為兩階段隱含波動度函數模型,分別配適隱含波動度函數的時間穩定(time-invariant)部分與時間不穩定(time-variant)部分。 本文模型在波動度的時間不穩定部分配適非對稱GARCH(1,1)過程,以描述隱含波動度的時間序列特性。本文使用的非對稱GARCH(1,1)過程將標的資產的正報酬與負報酬對價平隱含波動度的影響分別估計,並將蘊含於歷史價平隱含波動度中的訊息及標的資產報酬率與波動度之間的關連性藉由價平隱含波動度過程納入隱含波動度函數中,使隱含波動度函數能納入波動度的時間序列特性及資產報酬與波動度的相關性,藉此納入最近期的市場資訊,以增加隱含波動度模型的解釋及預測能力。時間穩定部分則根據Pena et al.(1999)的研究結果,取不對稱二次函數形式以配適實證上發現的笑狀波幅現象。時間穩定部分並導入相對價內外程度做為變數,以之描述價內外程度、距到期時間、及價平隱含波動度三者的交互關係;並以相對隱含波動度作為被解釋變數,使隱含波動度函數模型除理論上包含了比先前文獻提出的模型更多的訊息及彈性外,還能描繪「隱含波動度函數隨波動度的高低水準而變動」、「越接近到期日,隱含波動度對價內外程度的曲線越彎曲」、「隱含波動度函數為非對稱的曲線」、「波動度和資產價格有很高的相關性」等實證上常發現的現象。 本文以統計測度及交易策略之獲利能力檢定模型的解釋能力及預測能力是否具有統計與經濟上的顯著性。本文歸納之前文獻提出的不同隱含波動度函數模型,並以之與本文提出的模型做比較。本文以台指選擇權五分鐘交易頻率的成交價作為實證標的,以2003年1月1日~2006年12月31日作為樣本期間,並將模型解釋力及AIC作為模型樣本內配適能力之比較標準,我們發現本文提出的模型具有最佳的資料解釋能力。本文以2006年7月1日~2006年12月31日作為隱含波動度模型預測期間,以統計誤差及delta投資策略檢定模型的預測能力是否具有統計及經濟上的顯著性。實證結果指出,本文提出的模型對於預測下一期的隱含波動度及下一期的選擇權價格,皆有相當良好的表現。關於統計顯著性方面,我們發現本文提出的動態隱含波動度函數模型對於未來的隱含波動度及選擇權價格的預測偏誤約為其他隱含波動度函數模型的五分之一,而預測方向正確頻率亦高於預測錯誤的頻率且超過50%。關於經濟顯著性方面,本文使用delta投資組合進行經濟顯著性檢定,結果發現在不考慮交易成本下,本文提出的模型具有顯著的獲利能力。顯示去除標的資產價格變動對選擇權造成的影響後,選擇權波動度的預測準確性確實能經由delta投資組合捕捉;在考慮交易成本後,各模型皆無法獲得超額報酬。最後,本文提出的動態隱含波動度函數模型在考量非同步交易問題、30分鐘及60分鐘等不同的資料頻率、不同的投資組合交易策略後,整體的結論依然不變。 / This paper proposes a new implied volatility function to facilitate implied volatility forecasting and option pricing. This function specifically takes the time variation in the option implied volatility into account. Our model considers the time-variant part and fits it with an asymmetric GARCH(1,1) model, so that our model contains the information in the returns of spot asset and contains the relationship of the returns and the volatility of spot asset. This function also takes the time invariant in the option implied volatility into account. Our model fits the time invariant part with an asymmetric quadratic functional form to model the smile on the volatility. Our model describes the phenomena often found in the literature, such as the implied volatility level increases as time to maturity decreases, the curvature of the dependence of implied volatility on moneyness increases as options near maturity, the implied volatility curve changes as the volatility level changes, and the implied volatility function is an asymmetric curve. For the empirical results, we used a sample of 5 minutes transaction prices for Taiwan stock index options. For the in-sample period January 1, 2003–June 30, 2006, our model has the highest adjusted- and lowest AIC. For the out-of-sample period July 1, 2006–December 31, 2006, the statistical significance shows that our model substantially improves the forecasting ability and reduces the out-of-sample valuation errors in comparison with previous implied volatility functions. We conjecture that such good performance may be due to the ability of the GARCH model to simultaneously capture the correlation of volatility with spot returns and the path dependence in volatility. To test the economic significance of our model, we examine the profitability of the delta-hedged trading strategy based on various volatility models. We find that although these strategies are able to generate profits without transaction costs, their profits disappear quickly when the transaction costs are taken into consideration. Our conclusions were unchanged when we considered the non-synchronization problem or when we test various data frequency and different strategies.
3

波動度預測與波動度交易—以台灣選擇權市場為實證 / Forecasting volatility and volatility trading—evidence from Taiwan options market

林政聲 Unknown Date (has links)
本研究主要探討幾個廣受市場投資人所使用的波動度預測模型,如歷史波動度法、指數加權移動平均法、GARCH、EGARCH以及隱含波度,另外再考慮近年才被學者提出的RLS模型與A-RLS模型,一同比較它們對於台灣市場波動度的預估能力,並擇一最優者,作為從事波動度交易的訊號依據。本文在進行波動度交易之實證,主要是利用選擇權與期貨組合、選擇權與delta期貨組合、跨式交易策略與勒式交易策略等四種廣為波動度交易者使用之波動度交易策略,進而比較它們在樣本外的交易績效。本波動度預測的實證發現,樣本內的預測能力,是以GARCH和RLS模型最佳,而樣本外的預估能力,則是GARCH表現最好。另外,波動度交易的驗證結果顯示,若持有至次一交易日即平倉,勒式交易策略於買進波動度時會有最高的績效,而當放空波動度時,則是跨式交易策略會有最佳的表現。
4

S&P500波動度的預測 - 考慮狀態轉換與指數風險中立偏態及VIX期貨之資訊內涵 / The Information Content of S&P 500 Risk-neutral Skewness and VIX Futures for S&P 500 Volatility Forecasting:Markov Switching Approach

黃郁傑, Huang, Yu Jie Unknown Date (has links)
本研究探討VIX 期貨價格所隱含的資訊對於S&P 500 指數波動度預測的解釋力。過去許多文獻主要運用線性預測模型探討歷史波動度、隱含波動度和風險中立偏態對於波動度預測的資訊內涵。然而過去研究顯示,波動度具有長期記憶與非線性的特性,因此本文主要研究非線性預測模型對於波動度預測的有效性。本篇論文特別著重在不同市場狀態下(高波動與低波動)的實現波動度及隱含波動度異質自我迴歸模型(HAR-RV-IV model)。因此,本研究以考慮馬可夫狀態轉化下的異質自我迴歸模型(MRS-HAR model)進行實證分析。 本研究主要目的有以下三點: (1) 以VIX期貨價格所隱含的資訊提升S&P 500波動度預測的準確性。(2) 結合風險中立偏態與VIX期貨的資訊內涵,進一步提升S&P 500 波動度預測的準確性。(3) 考慮狀態轉換後的波動度預測模型是否優於過去文獻的線性迴歸模型。 本研究實證結果發現: (1) 相對於過去的實現波動度及隱含波動度,VIX 期貨可以提供對於預測未來波動度的額外資訊。 (2) 與其他模型比較,加入風險中立偏態和VIX 期貨萃取出的隱含波動度之波動度預測模型,只顯著提高預測未來一天波動度的準確性。 (3) 考慮狀態轉換後的波動度預測模型優於線性迴歸模型。 / This paper explores whether the information implied from VIX futures prices has incremental explanatory power for future volatility in the S&P 500 index. Most of prior studies adopt linear forecasting models to investigate the usefulness of historical volatility, implied volatility and risk-neutral skewness for volatility forecasting. However, previous literatures find out the long-memory and nonlinear property in volatility. Therefore, this study focuses on the nonlinear forecasting models to examine the effectiveness for volatility forecasting. In particular, we concentrate on Heterogeneous Autoregressive model of Realized Volatility and Implied Volatility (HAR-RV-IV) under different market conditions (i.e., high and low volatility state). This study has three main goals: First, to investigate whether the information extracted from VIX futures prices could improve the accuracy for future volatility forecasting. Second, combining the information content of risk-neutral skewness and VIX futures to enhance the predictive power for future volatility forecasting. Last, to explore whether the nonlinear models are superior to the linear models. This study finds that VIX futures prices contain additional information for future volatility, relative to past realized volatilities and implied volatility. Out-of-sample analysis confirms that VIX futures improves significantly the accuracy for future volatility forecasting. However, the improvement in the accuracy of volatility forecasts is significant only at daily forecast horizon after incorporating the information of risk-neutral skewness and VIX futures prices into the volatility forecasting model. Last, the volatility forecasting models are superior after taking the regime-switching into account.
5

交易量對於隱含波動度預測誤差之對偶效果-Panel Data的分析 / The Dual Effect of Volume and Volatility Forecasting Error-Panel Data analysis

李政剛, Lee,Jonathan K. Unknown Date (has links)
本研究探討選擇權交易量之大小對於波動度預測之效率性所造成之對偶效果(dual effect),驗證〝正常的高交易量〞與〝異常的高交易量〞對於波動度預測能力是否有不同的影響。本研究採用panel data之資料型態,以LIFFE上市的個股買權為對象,資料長度為三年左右。主要欲探討之假說為: 1.一般而言,交易量大的選擇權,其波動度估計誤差較交易量小的選擇權來得小。 2.相對於平日水準而言,某日交易量異常高的選擇權將有較大的波動度估計誤差。 本研究所使用的波動度預測模型為隱含波動度(ISD),採用的是最接近到期月份及最接近價平的合約。實證以組合迴歸、固定效果模型、隨機效果模型分別估計之,加以比較。結果發現固定效果模型為較佳之解釋模型,然而結果顯示交易量的對偶效果並不明確影響波動度預測誤差,故推測有某種影響公司間差異的因素,即公司間之異質性,比相對交易量更容易影響波動度預測之誤差。另外,透過組間與組內效果之分析,發現不論是長期還是短期,由於公司間的異質性存在,使得相對交易量對於波動度預測誤差均無明顯影響。 / The purpose of this research is to study the dual effect on the efficiency of volatility forecasting which is caused by the volume of option market, with the intent to test whether〝normal high volume〞and〝abcdrmal high volume〞cause different results on the ability of volatility forecasting. The data used is in the form of panel data. It is drawn from LIFFE, and has a length of about three years. The hypotheses to be examined in this study are:1. High-average-volume options have smaller volatility forecasting errors than low-average-volume options; 2. Options have larger volatility forecasting errors on abcdrmally-high-volume days than on normal-volume days. In this research, volatility is forecasted by implied standard deviation (ISD) which is implied in the at-the-money and the nearest expiry month options. Pooled regression、fixed effect model、and random effect model methods were applied. The results show that the fixed effect model made the best analysis amongst the three models. However, the result does not support the hypotheses made above, which means that volume does not have much influence on volatility forecasting error. It is inferred that there exists some other factors which could cause the difference between firms, namely heterogeneity, and these factors have much more powerful influence over volatility forecasting error than volume. Finally, it was found that no matter for long run or short run, because of the existence of heterogeneity, relative volume doesn’t have obvious influence on volatility forecasting errors when analyzing the difference between the between-individual effect and the within-individual effect.

Page generated in 0.0301 seconds