1 |
透過文字探勘技術探討各校高階經營管理(EMBA)學程之特性-以九校國立大學為例 / Analyzing the Profiles of EMBA Program by Text Mining Methodology - A Case of Nine EMBA Programs林庭竹, Lin, Ting Chu Unknown Date (has links)
近年來,臺灣高階經營管理(EMBA)學程市場逐漸飽和,預計就讀EMBA的企業經理人比例趨緩,再加上兩岸三地EMBA學程崛起,都將影響臺灣EMBA的發展。因此,本研究認為可根據供應面與需求面來進行檢視,分析出目前臺灣EMBA供需兩大層面,由各校教師與學生所嶄露的特徵輪廓,使臺灣的EMBA邁向具有各校特色的適性化學程。
在第一階段研究過程中,選取臺灣九校國立頂尖大學所設立的EMBA,作為研究對象。利用Python撰寫爬蟲程式,蒐集九校EMBA教師與學生的文章標題與概要,其中教師文本總計23033篇,學生文本總計7342篇。運用Jieba對文本斷詞後,以14個管理學別視為供應面,需求面則是根據政府訂立的12個職業別,來做為目標字詞,透過Word2Vec模型計算管理學別與教師、職業別與學生文本兩大目標字詞的關聯詞,最後獲得各目標字詞20個關聯詞的詞集。而第二階段透過第一階段所呈現的關聯詞,進一步計算與教師和學生文本字詞的Cosine相似度,來辨別各校教師與學生間所呈現的供需面之共同特徵,代表該EMBA之特質。
第一階段研究結果顯示,Word2Vec模型透過特徵向量辨別關聯詞時,可準確辨別出與目標字詞具有相同涵義或相互關聯的字詞,且所找出的20個關聯字詞與目標字詞的Cosine相似度也多大於0.7,因此透過Word2Vec模型建立目標字詞之擴增詞集具有相當高的準確性。而第二階段透過第一階段所呈現的關聯詞所計算的供需面Cosine相似度之排序,可發現各校EMBA由教師與學生成員文本與各目標字詞的相似度排序皆有所不同,因此各學程可透過其差異性作為特色指標,發展出適性化學程,提高臺灣企業經理人就讀EMBA之意願。
|
Page generated in 0.026 seconds