• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Toward Real-Time FLIP Fluid Simulation through Machine Learning Approximations

Pack, Javid Kennon 01 December 2018 (has links)
Fluids in computer generated imagery can add an impressive amount of realism to a scene, but are particularly time-consuming to simulate. In an attempt to run fluid simulations in real-time, recent efforts have attempted to simulate fluids by using machine learning techniques to approximate the movement of fluids. We explore utilizing machine learning to simulate fluids while also integrating the Fluid-Implicit-Particle (FLIP) simulation method into machine learning fluid simulation approaches.

Page generated in 0.1432 seconds