• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 766
  • 136
  • 111
  • 107
  • 50
  • 38
  • 20
  • 19
  • 14
  • 9
  • 8
  • 8
  • 8
  • 8
  • 8
  • Tagged with
  • 1597
  • 1597
  • 251
  • 249
  • 195
  • 167
  • 149
  • 134
  • 132
  • 128
  • 121
  • 103
  • 94
  • 89
  • 86
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
531

Insulin, Cholesterol and A-beta: Roles and Mechanisms in Alzheimer’s disease

Najem, Dema 08 January 2014 (has links)
Alzheimer’s disease (AD) is characterized by amyloid-β (Aβ) and tau pathologies, insulin resistance, neuro-inflammation and dysregulation of cholesterol homeostasis, all of which play a role in neuro-degeneration. The main aim of this study was to determine possible relationships between insulin signaling, cholesterol biosynthesis and their effects on Aβ, and inflammatory response in vitro. Insulin treatment increased cholesterol synthesis in human Neuroblastoma SH-SY5Y (SHY) and mouse neuroblastoma 2a (N2a) and N2a transfected with human APP (N2a-APP) by up-regulating biosynthesis enzymes including 24-dehydrocholesterol reductase (DHCR24) and 3-hydroxy-3methyl-glutaryl-CoA reductase (HMGCR) through sterol regulatory element binding protein-2 (SREBP2) up-regulation. Aβ caused insulin resistance in N2a-APP cells by phosphorylating IRS-1 at Ser612, inhibiting signaling to downstream targets. Aβ1-42-treated SHY exhibited similar IRS-1 phosphorylation at Ser612 and inflammatory response of JNK activation. Aβ1-42 caused down-regulation of neuro-protective/anti-inflammatory DHCR24, and an increase in HMGCR levels indicating dysregulation of cholesterol homeostasis in SHY cells. Insulin resistance, Aβ toxicity, neuro-inflammation and dysregulation of cholesterol homeostasis appear to be intertwined processes in AD that should be studied simultaneously.
532

Beneficial effects of quetiapine in the APP/PS1 transgenic mice: implications for early intervention for Alzheimer's disease

Zhu, Shenghua 14 July 2011 (has links)
Alzheimer's disease (AD) is the leading cause of dementia. Amyloid plaques in the brain remain a pathological feature of AD. These plaques are primarily composed of amyloid β-protein (Aβ). It has been postulated that glycogen synthase kinase-3β (GSK3β) activity might exert a central role in the development of AD. GSK3β activity has been implicated in tau phosphorylation, APP processing, Aβ production and neurodegeneration. Quetiapine is frequently used to treat psychoses in AD patients at the late stage and has inhibitory effects on GSK3β activity in mouse brains after acute/subchronic treatment. Therefore, the proposed hypothesis is that chronic quetiapine administration after amyloid plaque onset reduces AD like pathology and alleviates AD like behaviours in APP/PS1 transgenic mice by inhibiting GSK3β activity. APP/PS1 transgenic mice were treated with quetiapine (2.5, 5 mg/kg/day) in drinking water starting from 3.5 months of age, for a period of 8 months. One week after behaviour testing, mice were sacrificed at 12 months of age. Half of the hemispheres were rapidly frozen for immunoblot and ELISA analyses and the other half were fixed with 4% paraformaldehyde for histological analyses. Quetiapine treatment reduced amyloid plaques formation in the cortex and hippocampus of AD mice. It also improved the behavioural deficits in these mice, including attenuating impaired memory and anxiety-like phenotypes. In addition, chronic quetiapine administration inhibited GSK3β, which resulted in reduced production of Aβ in cortices and hippocampi of transgenic mice. Quetiapine treatment also significantly decreased the activation of astrocytes and attenuated synapse integrity impairment in transgenic mice. These findings suggest that early application of quetiapine can alleviate memory deficits and pathological changes in the APP/PS1 transgenic mouse model of AD, and further support that modulation of GSK3β activity by quetiapine may be a therapeutic option for AD.
533

A family living with Alzheimer's disease: The communicative challenges.

Jones, Danielle January 2013 (has links)
Alzheimer's disease irrevocably challenges a person's capacity to communicate with others. Earlier research on these challenges focused on the language disorders associated with the condition and situated language deficit solely in the limitations of a person's cognitive and semantic impairments. This research falls short of gaining insight into the actual interactional experiences of a person with Alzheimer's and their family. Drawing on a UK data set of 70 telephone calls recorded over a two-and-a-half year period (2006-2008) between one elderly woman with Alzheimer's disease, and her daughter and son-in-law, this paper explores the role which communication (and its degeneration) plays in family relationships. Investigating these interactions, using a conversation analytic approach, reveals that there are clearly communicative difficulties, but closer inspection suggests that they arise due to the contingencies that are generated by the other¿s contributions in the interaction. That being so, this paper marks a departure from the traditional focus on language level analysis and the assumption that deficits are intrinsic to the individual with Alzheimer's, and instead focuses on the collaborative communicative challenges that arise in the interaction itself and which have a profound impact on people's lives and relationships.
534

Design, Synthesis and Biological Evaluation of 2,4-Disubstituted Pyrimidine Derivatives: Multifunctional Candidates as Potential Treatment Options for Alzheimer’s Disease

Mohamed, Tarek January 2011 (has links)
Alzheimer’s disease (AD) is a highly complex and rapidly progressive neurodegenerative disorder characterized by the systemic collapse of cognitive function and formation of dense amyloid-β (Aβ) plaques and neurofibrillary tangles (NFTs). AD pathology is derived from the cholinergic, amyloid and tau hypotheses, respectively. Current pharmacotherapy with known anti-cholinesterases, such as Aricept ® and Exelon ®, only offer symptomatic relief without any disease-modifying effects (DMEs). It is now clear that in order to prevent the rapid progression of AD, new therapeutic treatments should target multiple AD pathways as opposed to the traditional “one drug, one target” approach. This research project employed medicinal chemistry tools to develop multifunctional small organic molecules against three key targets of AD pathology – the cholinesterases (AChE and BuChE), AChE-induced and self-induced Aβ1-40 aggregation and generation (β-secretase). A chemical library composed of 112 derivatives was generated to gather structure-activity relationship (SAR) data. The derivatives were based on a novel, non-fused, 2,4-disubstituted pyrimidine ring (2,4-DPR) template with substituents at the C-2 and C-4 position varying in size, steric and electronic properties. Molecular modeling was utilized to investigate their binding modes within the target enzymes and along with the acquired SAR, the chemical library was screened to identify lead multifunctional candidates.
535

The effects of a human b-amyloid gene on learning and memory in transgenic mice / / Effects of a human beta-amyloid gene on learning in transgenic mice

Tirado Santiago, Giovanni January 1994 (has links)
Brain deposition of the $ beta$-amyloid protein is an early marker of Alzheimer's disease (AD). AD is a neurodegenerative disorder characterized by learning and memory impairments. Here, mice (B6C3, 8 and 20 months old) transgenic for a human $ beta$-amyloid fragment were compared to normal litter mates in spatial and non-spatial learning tasks in the Morris water maze, according to standard procedures. Four measures of learning and performance were analyzed statistically: latency, total distance swam, mean distance to a platform, and number of trials correct in reaching a platform. Transgenic mice were impaired relative to their litter mates in spatial learning and performed better in the non-spatial task than in the spatial task in the first three measures. An age effect for transgenics was observed in the total distance measure. The results suggest that expression of the human $ beta$-amyloid protein may produce a selective learning deficit in mice.
536

Modelling aspects of neurodegeneration in Saccharomyces cerevisiae

Traini, Mathew, Biotechnology & Biomolecular Sciences, Faculty of Science, UNSW January 2009 (has links)
The neurodegenerative disorders Alzheimer??s Disease (AD) and Parkinson??s Disease (PD) are characterised by the accumulation of misfolded amyloid beta 1-42 peptide (Aβ1-42) or α-synuclein, respectively. In both cases, there is extensive evidence to support a central role for these aggregation-prone molecules in the progression of disease pathology. However, the precise mechanisms through which Aβ1-42 and α-synuclein contribute to neurodegeneration remain unclear. Organismal, cellular and in vitro models are under development to allow elucidation of these mechanisms. A cellular system for the study of intracellular Aβ1-42 misfolding and localisation was developed, based on expression of an Aβ1-42-GFP fusion protein in the model eukaryote Saccharomyces cerevisiae. This system relies on the known inverse relationship between GFP fluorescence, and the propensity to misfold of an N-terminal fusion domain. To discover cellular processes that may affect the misfolding and localisation of intracellular Aβ1-42, the Aβ1-42-GFP reporter was transformed into the S. cerevisiae genome deletion mutant collection and screened for fluorescence. 94 deletion mutants exhibited increased Aβ1-42-GFP fluorescence, indicative of altered Aβ1-42 misfolding. These mutants were involved in a number of cellular processes with suspected relationships to AD, including the tricarboxylic acid cycle, chromatin remodelling and phospholipid metabolism. Detailed examination of mutants involved in phosphatidylcholine synthesis revealed the potential for phospholipid composition to influence the intracellular aggregation and localisation of Aβ1-42. In addition, an existing S. cerevisiae model of α-synuclein pathobiology was extended to study the effects of compounds that have been hypothesized to be environmental risk factors leading to increased risk of developing PD. Exposure of cells to aluminium, dieldrin and compounds generating reactive oxygen species enhanced the toxicity of α- synuclein expression, supporting suggested roles for these agents in the onset and development of PD. Expression of α-synuclein-GFP in phosphatidylcholine synthesis mutants identified in the Aβ1-42-GFP fluorescence screen resulted in dramatic alteration of α-synuclein localisation, indicating a common involvement of phospholipid metabolism and composition in modulating the behaviours of these two aggregation-prone proteins.
537

The impact of temporality in Alzheimer's dementia : n existential philosophical interpretation

Glonek, Judith A January 2001 (has links)
This thesis represents a work of basic research into dimensions of time and space, referred to as temporality, in the condition Alzheimer's dementia. In this theoretical, text-based study, temporality was explored as a dual exposition, in ordinary functioning and in impaired functioning. As expected, the influence of time and space, was found to enter each experience and was observable in every facet of human endeavour and behaviour. Significantly, however, fundamental new interpretations were developed regarding the role of temporality in human life and functioning. Temporality was identified as an essential, common component of both cognitive functions and cohesive identity construction in a unified view of body and mind. As an illustration and clarification of this concept of temporality as a subjective, psychological clock, an innovative framework, the Personal Space-Time model was developed.
538

Sensitivity to Emotion Specified in Facial Expressions and the Impact of Aging and Alzheimer's Disease

McLellan, Tracey Lee January 2008 (has links)
This thesis describes a program of research that investigated the sensitivity of healthy young adults, healthy older adults and individuals with Alzheimer’s disease (AD) to happiness, sadness and fear emotion specified in facial expressions. In particular, the research investigated the sensitivity of these individuals to the distinctions between spontaneous expressions of emotional experience (genuine expressions) and deliberate, simulated expressions of emotional experience (posed expressions). The specific focus was to examine whether aging and/or AD effects sensitivity to the target emotions. Emotion-categorization and priming tasks were completed by all participants. The tasks employed an original set of cologically valid facial displays generated specifically for the present research. The categorization task (Experiments 1a, 2a, 3a, 4a) required participants to judge whether targets were, or were not showing and feeling each target emotion. The results showed that all 3 groups identified a genuine expression as both showing and feeling the target emotion whilst a posed expression was identified more frequently as showing than feeling the emotion. Signal detection analysis demonstrated that all 3 groups were sensitive to the expression of emotion, reliably differentiating expressions of experienced emotion (genuine expression) from expressions unrelated to emotional experience (posed and neutral expressions). In addition, both healthy young and older adults could reliably differentiate between posed and genuine expressions of happiness and sadness, whereas, individuals with AD could not. Sensitivity to emotion specified in facial expressions was found to be emotion specific and to be independent of both the level of general cognitive functioning and of specific cognitive functions. The priming task (Experiments 1b, 2b, 3b,4b) employed the facial expressions as primes in a word valence task in order to investigate spontaneous attention to facial expression. Healthy young adults only showed an emotion-congruency priming effect for genuine expressions. Healthy older adults and individuals with AD showed no priming effects. Results are discussed in terms of the understanding of the recognition of emotional states in others and the impact of aging and AD on the recognition of emotional states. Consideration is given to how these findings might influence the care and management of individuals with AD.
539

Metabolic impairment of the posterior cingulate cortex and reversal by methylene blue a novel model and treatment of early stage Alzheimer's disease /

Riha, Penny Denise, January 1900 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 2007. / Vita. Includes bibliographical references.
540

The molecular mechanisms of the loss of glial glutamate transporter EAAT2 in neurodegenerative diseases

Tian, Guilian. January 2007 (has links)
Thesis (Ph. D.)--Ohio State University, 2007. / Title from first page of PDF file. Includes bibliographical references (p. 140-158).

Page generated in 0.0475 seconds