• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 163
  • 110
  • 25
  • 9
  • 9
  • 6
  • 4
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 543
  • 252
  • 92
  • 82
  • 72
  • 59
  • 55
  • 48
  • 43
  • 43
  • 42
  • 42
  • 39
  • 37
  • 34
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
201

Anatomically-based, subject-specific modelling of lower limb motion during gait

Oberhofer, Katja January 2009 (has links)
No description available.
202

Anatomically-based, subject-specific modelling of lower limb motion during gait

Oberhofer, Katja January 2009 (has links)
No description available.
203

Computational optimal control modeling and smoothing for biomechanical systems

Said, Munzir January 2007 (has links)
[Truncated abstract] The study of biomechanical system dynamics consists of research to obtain an accurate model of biomechanical systems and to find appropriate torques or forces that reproduce motions of a biomechanical subject. In the first part of this study, specific computational models are developed to maintain relative angle constraints for 2-dimensional segmented bodies. This is motivated by the fact that there is a possibility of models of segmented bodies, moving under gravitational acceleration and joint torques, for its segments to move past the natural relative angle limits. Three models to maintain angle constraints between segments are proposed and compared. These models are: all-time angle constraints, a restoring torque in the state equations and an exponential penalty model. The models are applied to a 2-D three segment body to test the behaviour of each model when optimizing torques to minimize an objective. The optimization is run to find torques so that the end effector of the body follows the trajectory of a half circle. The result shows the behavior of each model in maintaining the angle constraints. The all-time constraints case exhibits a behaviour of not allowing torques (at a solution) which make segments move past the constraints, while the other two show a flexibility in handling the angle constraints more similar to a real biomechanical system. With three computational methods to represent the angle contraint, a workable set of initial torques for the motion of a segmented body can be obtained without causing integration failure in the ordinary differential equation (ODE) solver and without the need to use the “blind man method” that restarts the optimal control many times. ... With one layer of penalty weight balancing between trajectory compliance penalty and other optimal control objectives (minimizing torque/smoothing torque) already difficult to obtain (as explained by the L-curve phenomena), adding the second layer penalty weight for the closeness of fit for each of the body segments will further complicate the weight balancing and too much trial and error computation may be needed to get a reasonably good set of weighting values. Second order regularization is also added to the optimal control objective and the optimization has managed to obtain smoother torques for all body joints. To make the current approach more competitive with the inverse dynamic, an algorithm to speed up the computation of the optimal control is required as a potential future work.
204

Anatomically-based, subject-specific modelling of lower limb motion during gait

Oberhofer, Katja January 2009 (has links)
No description available.
205

Modélisation biomécanique de la main pour l'estimation des contraintes du système musculo-squelettique lors de la préhension pouce-index / Biomechanical modelling of the hand to estimate musculoskeletal constraints during thumb-index finger pinch grip

Domalain, Mathieu 19 February 2010 (has links)
La préhension manuelle est une des habilités de l’homme la plus développée et la plus utilisée dans la vie de tous les jours. Cette capacité nous permet de saisir et de manipuler des objets dans des configurations aussi nombreuses que complexes. Malheureusement, la main est aussi le siège de nombreuses blessures qui, de par l’importance de la préhension, sont fortement handicapantes. Face à ce constat, comprendre les contraintes mécaniques qui sont exercées dans les muscles, les tendons, les articulations et les ligaments lors de gestes de la vie quotidienne apparaît comme un enjeu majeur pour la prévention, la réhabilitation et l’ergonomie. L’objectif de ce travail doctoral était de développer un modèle biomécanique de la préhension permettant une estimation de ces variables non mesurables. A titre d’exemple,le paradigme de la pince pouce-index a été utilisé. Dans une première étude, les modèles biomécaniques de la pince disponibles dans la littérature ont été développés et comparés.Suite à cette évaluation, il a été constaté que ces modèles, en particulier le pouce,nécessitaient des améliorations pour permettre une évaluation physiologiquement réaliste lors de la préhension. Dès lors, plusieurs améliorations ont été proposées. Premièrement, une procédure expérimentale a été développée afin d’évaluer et d’inclure les participations mécaniques passives (ligaments, tissus mous, butées osseuses) de l'articulation trapèzométacarpienne. Deuxièmement, des mesures effectuées par IRM ont été utilisées afin d’intégrer l’action mécanique du muscle First Dorsale Interosseous dans l’équilibre du pouce,ce muscle étant alors négligé malgré son importance dans les tâches de préhension.Troisièmement, une méthode expérimentale permettant d’évaluer plus facilement et plus précisément, in situ, les axes de flexion/extension et d’adduction/abduction de l’articulation trapèzométacarpienne a été proposée et évaluée. Enfin, le modèle biomécanique incluant ces améliorations a été mis en œuvre dans une dernière étude ergonomique visant à étudier l’effet de la taille de l’objet manipulé sur les forces musculaires et articulaires. / Manual precision grip is one of man's most developed and most used ability in everyday lifeactivities. The negative outcome is the high exposure of the hand to repetitive stress injurieswhich are often very disabling. Thus, the understanding of the mechanical stress exerted inmuscles, tendons, joints and ligaments during gripping tasks appears as a major issue forinjury prevention, rehabilitation and ergonomic considerations. This doctoral work aimed atdeveloping a biomechanical model of the grip to estimate the unmeasurable internal loads. Asan example, the classical paradigm of the thumb - index finger grip was used. In a first study,the biomechanical models of the thumb available in the literature were compared and severalimprovements proposed in order to obtain more physiologically realistic predictions. First, anexperimental method was developed to evaluate and include passive structures moment intothe equilibrium of the trapeziometacarpal joint (TMC). Secondly, MRI was used to integratethe mechanical action of the First Dorsal Interosseous muscle at the TMC, since this musclehas commonly been neglected in thumb models but seems essential during pinch grip.Thirdly, the kinematic model which has to be used with the anthropometric data of tendonmoment arms was evaluated and compared to our proposition of a functional method toassess, in situ, the axes of rotation of the TMC. Finally, the biomechanical model includingthese improvements was implemented in an ergonomic study. We investigated the effect ofobject width on grip forces and muscles/joints loads. This doctoral work finds its consistencyin its desire to develop and apply the biomechanical modelling of the hand in the fields ofclinical and ergonomics.
206

The estimation of body mass from human skeletal remains

St. George, Karen R. Bottenfield 08 April 2016 (has links)
The ability to estimate body mass from human skeletal remains with a high degree of accuracy would be significant for the identification of identifying unknown individuals in a forensic anthropology context, documenting secular change in modern populations, and evaluating any prevalence in prehistoric populations. Modern research investigating body mass incorporates one of two models: morphometric and biomechanical. The morphometric model views the body as a cylinder, where weight estimates are gathered from extreme points such as the breadth of the pelvis. In contrast, the biomechanical model incorporates engineering principles and biology to understand the effects of mass on the human skeleton. Only the biomechanical model can accommodate extremes in body mass, such as those exhibited by modern populations. This study examined the accuracy of estimating body mass (obesity in particular) from human skeletal remains using a suite of traits shown to be significant in previous studies, including documented biomechanical analysis of obese individuals involving gait and sit-to-stand (STS) movements. It was hypothesized that using a combination of methods, body mass could be estimated with a high degree of accuracy. Using a large skeletal sample (n = 191), composed of male and females with documented age, weight, and height, the following three variables were examined: (1) the spinal manifestation of diffuse idiopathic skeletal hyperostosis (DISH), (2) osteoarthritis (OA) of the tibiae, and (3) external femoral dimensions. These were then subject to statistical tests. Spearman's rank-order correlation and Mann-Whitney U tests showed significant relationships between DISH and obesity in females (p<.05), but not for males. The presence and severity of OA of the medial condyles were also significantly related to BMI in females (p<.05). In males, the relationship between BMI and OA was only significant on the condyles of the right tibiae (p<.05). Finally, ANOVA and Pearson's product-moment correlation tests were performed to evaluate the cross-sectional dimensions of the femur. The effect of age, stature, and BMI were also examined. ANOVA results showed a significant effect between BMI and M-L cross-sectional dimensions among both sexes (p<.05). Initial Pearson's tests performed separately on males and females showed no significant correlations; however, after the sexes were pooled, small to moderate negative correlations between the M-L/A-P ratio along the diaphysis of the femur and BMI were found. Finally, multiple regression analyses were performed. The models for both sexes with all ten variables was statistically significant for BMI. The final accuracy rate was 78.48% for females and 84.37% for males. The primary goal of this study was to evaluate Moore's (2008) body mass estimation study. In this investigation, however, all dimensions of the femur were performed using an osteometric board and sliding calipers following the guidelines used by Agostini and Ross (2011). The results of this study paralleled many of the observations seen in previous studies, particularly the M-L lateral widening of the femur. Future research should continue to examine the relationship of DISH and OA with body mass, particularly regarding the varying manifestations between the sexes and confounding factors such as age.
207

Modélisation biomécanique 3D des prolapsus génitaux et simulation de leur correction chirurgicale / 3D biomechanical modeling of genital prolapse and simulation of surgical treatment

Lamblin, Géry 10 November 2017 (has links)
Le prolapsus génital est une pathologie fonctionnelle féminine fréquente dont le retentissement sur la qualité de vie des femmes peut être important et constitue aujourd'hui un véritable enjeu de santé publique. / Genital prolapse is a frequent female functional pathology that can have strong impact on quality of life; it is today a real public health issue. Surgical treatment of the various stages of cystocele is a current challenge. We developed an innovative 3D numerical model using the Finite Elements method, to enable simulation of the various surgical techniques. The model also allowed validation of our surgical hypotheses and provided some answers to outstanding questions in cystocele surgery. The first of my PhD studies allowed me to make a complete review of the anatomical pelvic organ support structures involved in prolapse, and to distinguish certain anatomic theories relating clinical expression to specific anatomic lesions. The various theories are actually quite close and complementary, but differ in terms of the mechanism implicated. The second study involved designing a 3D numerical biomechanical model of the pelvic floor, based on Finite Elements analysis coupled to dynamic MRI. The model allowed me to assess the various theories of pelvic organ suspension, and to design simulations of cystocele mobility. The model provided better understanding of the anatomic structures involved in prolapse. The third study involved designing a 3D numerical pathologic model based on data for patients with grade ≥ 3 cystocele. The model enabled analysis and assessment of the impact of the various surgical correction techniques and fixation zones on organ mobility. Although the results have not been validated clinically, the study contributed to the scientific literature on the importance of mesh reinforcement in the management of cystocele. Comparison between the various techniques (sacrocolpopexy, vaginal mesh suspension, sacrospinous fixation) using the POP-Q points found that point Ba was better corrected by sacrocolpopexy than sacrospinous fixation or vaginal mesh suspension. For sacrospinous fixation, the further it is performed from the sciatic spine, the better the apical correction of point C but the poorer the correction of point Ba. These findings could be used to improve surgical correction techniques and standardize practice. Thus, our 3D numerical cystocele model could contribute to selecting the surgical technique for correction of the cervix and anterior vaginal wall. The Finite Elements model of the pelvic system provides better understanding of the mechanisms underlying surgical correction of cystocele and the vaginal apex. It could also enable the results of prolapse surgery to be predicted, adapting technique to the individual patient by preoperative simulation. Simulation provides original and interesting information on mobility in prolapse. The present simulation results obviously need future assessment in comparison with clinical practice. In conclusion, simulation and the implementation of a 3D numerical model of pelvic mobility now allows better understanding of the mechanisms underlying pelvic statics disorder, with simulation of pathological pelvic mobility and of prolapse surgery procedures.
208

Modelo biomecânico tridimensional para análise das forças internas atuantes na coluna cervical superior e inferior durante o ciclismo

Pasini, Maicon January 2009 (has links)
Elevados índices de dor cervical e lombar têm sido reportados em ciclistas. Fatores como a postura adotada na bicicleta, a ativação dos músculos extensores da coluna e a ação de cargas mecânicas nas estruturas da coluna tem sido apontados como possíveis causas da dor. Embora relatados e aparentemente aceitos, poucos estudos objetivaram investigar estes fatores. Em adição, a dor crônica não específica é frequentemente diagnosticada em ciclistas, pois poucas evidências de anormalidade são observadas quando realizados exames radiológicos clínicos. O emprego de métodos biomecânicos de investigação, como a estimativa da magnitude da força muscular dos extensores da coluna e da força articular em diferentes níveis da coluna poderia contribuir para avaliação do risco de lesão e dor em decorrência do ciclismo, além de auxiliar na criação de estratégias de prevenção e programas de reabilitação. Assim, este estudo teve como objetivo quantificar e comparar as forças internas atuantes na coluna cervical durante o ciclismo em diferentes posturas, por meio do desenvolvimento e aplicação de um modelo biomecânico tridimensional in vivo. O modelo biomecânico proposto foi composto por dois segmentos rígidos (coluna cervical superior e inferior) conectados. O segmento coluna cervical superior compreende a cabeça, C1 e C2. O segmento coluna cervical inferior compreende as vértebras cervicais de C3 a C7. No segmento coluna cervical superior são considerados dois vetores de força muscular: FM1 (rectus capitis posterior major, rectus capitis posterior minor, obliquus capitis superior e obliquus capitis inferior) e FM2 (semispinalis capitis e splenius capitis). Já no segmento coluna cervical inferior estão inclusos os vetores FM3 (semispinalis cervicis) e FM4 (splenius cervicis). A resolução das equações de movimento de Newton-Euler é realizada por meio da solução inversa. Os parâmetros cinemáticos foram obtidos utilizando imagens externas da cabeça e coluna cervical, adquiridas por meio de quatro câmeras de vídeo digital com frequencia de amostragem de 25 Hz. Para estimar a localização dos centros de rotação (C2-3 e C6-7) foram realizados exames radiológicos convencionais estáticos. Os parâmetros de massa e centro de massa foram retirados de tabelas antropométricas da literatura. Participaram do estudo 12 ciclistas com pelo menos dois anos de experiência competitiva cada. O estudo foi aprovado pelo Comitê de Ética em Pesquisa da Universidade Federal do Rio Grande do Sul e os sujeitos assinaram um termo de consentimento livre e esclarecido. Cada participante foi avaliado utilizando sua própria bicicleta acoplada a um ciclossimulador magnético, em duas etapas realizadas no mesmo dia. Inicialmente foi mensurada a massa corporal total do individuo e em seguida identificados e marcados 14 pontos anatômicos de interesse com uma caneta dermatográfica. Durante as avaliações foram fixos marcadores revestidos com papel reflexivo e contendo chumbo no interior em todos os pontos anatômicos de interesse. Na Etapa I os sujeitos pedalaram durante 2 minutos em cada postura (ereta, descanso, intermediária, ataque e cotovelos flexionados), sendo coletados dados cinemáticos durante os últimos 30 segundos de cada uma. Na Etapa II foram realizados exames radiológicos estáticos em cada uma das 5 posturas analisadas (ereta, descanso, intermediária, ataque e cotovelos flexionados) e em flexão e extensão máximas da coluna cervical. Os resultados indicam que as forças internas atuantes nas estruturas da coluna cervical apresentaram maiores magnitudes nas posturas que envolvem a prática do ciclismo (descanso, intermediária, ataque e cotovelos flexionados), quando comparadas a postura de referência (ereta). Observando somente as posturas que envolvem o ciclismo, as forças internas aumentaram gradativamente a medida que os ciclistas transferiram o apoio de suas mãos da região superior para a região inferior do guidão, adotando as posturas descanso, intermediária e ataque, respectivamente. Entretanto, as maiores magnitudes das forças internas foram observadas quando os ciclistas efetuaram o apoio das mãos envolvendo os manetes e flexionaram a articulação do cotovelo (postura cotovelos flexionados). Proporcionalmente os maiores aumentos das forças internas ocorreram na coluna cervical superior, porém as maiores magnitudes das forças internas foram alcançadas na coluna cervical inferior. O processo de avaliação demonstrou que o modelo biomecânico tridimensional da coluna cervical proposto foi considerado capaz de representar de maneira confiável o sistema de interesse. Os resultados encontrados são coerentes, sendo o modelo um instrumento adequado para estimar as forças internas atuantes na coluna cervical durante o ciclismo em diferentes posturas. / High index of cervical and lumbar pain had been registered in cyclists. Factors as a posture adopted on bicycle, the activity of spine extensor muscles and the action of mechanical load in the spine structures had been put like possible causes of pain. Although related and apparently accepted, few studies investigate these factors. In addition, the non-specific chronic pain is frequently diagnosed in cyclists, because few evidences of abnormalities are investigated when clinic radiologics exams are done. The use of biomechanical methods of investigation, like the estimate of muscular force magnitude of extensors of spine and of joint force in different levels of spine can be contributed to evaluation of injury risk and pain caused by cycling, beyond the assist in strategies of prevention and rehabilitation programs. Therefore, this study had like objective to quantify and compare the active internal forces in the cervical spine during cycling in different postures, through development and application of three dimensional in vivo biomechanical model. The biomechanical model suggested was compound by two rigid segments (upper and lower cervical spine) connected. The upper cervical spine segment include head, C1 and C2. The lower cervical spine segment include cervical vertebraes of C3 to C7. In the upper cervical spine segment are considered two vectors of muscular force: FM1 (rectus capitis posterior major, rectus capitis posterior minor, obliquus capitis superior e obliquus capitis inferior) and FM2 (semispinalis capitis e splenius capitis). In the lower cervical spine segment are included the vectors FM3 (semispinalis cervicis) and FM4 (splenius cervicis). The resolution of movement equation of Newton-Euler is done through inverse dynamics. The kinematic parameters were obtained using external images of head and cervical spine, acquired by four digital video cameras with sampling frequency of 25 Hz. To estimate the location of rotation centers (C2-3 and C6-7) statics conventional radiologic exams were done. The parameters of mass and center of mass were removed of anthropometric tables of literature. 12 cyclists with at least two years of competitive experience each one participated of the study. The study was approved by Ethics Committee in Researches of Federal University of Rio Grande do Sul and the subjects signed a free and clear consent term. Each participant was assessed using your bicycle attached in a magnetic cycle simulator, in two stages done in the same day. Initially the total body mass of subjects was measured and then 14 anatomic points of interest were identified and marked with a dermatography pen. During the evaluation markers encased with reflective paper and containing lead inside of these markers were fixed in all anatomic points of interest. In the stage I the subjects rode a bicycle during 2 minutes in each posture (upright neutral, rest, intermediate, attack and flexed elbows). The kinematic data were collected during the last 30 seconds of each one. In the stage II static radiologic exams were done in each of 5 analyzed postures (upright neutral, rest, intermediate, attack and flexed elbows) and in maxim flexion and extension of cervical spine. The results indicate that the internal forces active in the structures of cervical spine presented more magnitudes in the postures that involve the cycling practice (rest, intermediate, attack and flexed elbows), when compared to reference posture (upright neutral). Observing just the postures that involve the cycling, the internal forces gradually increased as cyclists transferred the your hands from upper to lower region of handlebar, adopting the rest, intermediate and attack postures, respectively. However, the greater magnitude of internal forces were observed when the cyclists hands involving the brake levers and flexed the elbow joints (flexed elbows posture). Proportionally the greatest increase of internal forces occurred in the upper cervical spine, however the greatest magnitudes of internal forces were reached in the lower cervical spine. The evaluation process demonstrated that the three dimensional biomechanical model of cervical spine was considered able to represent of reliable way the interest system. The results found are coherent, the model is an adequate instrument to estimate the internal forces active in the cervical spine during cycling in different postures.
209

Realidade virtual e sensores inerciais no desenvolvimento da tecnologia assistiva : um sistema para estudo da marcha humana baseado em fusão de sensores inerciais

Corrêa, Daniel dos Santos January 2015 (has links)
A marcha humana, ou caminhada, é um padrão cíclico de movimentos corporais que se repetem a cada passo que desloca um indivíduo de um local a outro. Atualmente, avaliações biomecânicas da marcha humana tem sido utilizado no diagnóstico de alterações neuromusculares, músculo-esqueléticas e como forma de avaliação pré e pós-tratamento cirúrgico, medicamentoso e/ou fisioterapêutico. O presente trabalho apresenta o desenvolvimento de uma ferramenta acadêmica de baixo custo para o estudo da marcha humana. Esse sistema consiste no sensoriamento da marcha de um usuário através de sensores inerciais e de um modelo virtual do corpo humano para permitir a visualização do movimento gerado. Dessa maneira o usuário poderá ter suas ações corrigidas por sua percepção visual e também corrigida pelas orientações de um fisiatra ou fisioterapeuta que terá a reprodução do modelo virtual conforme a movimentação detalhada do paciente para análise. O sistema ainda efetuará os registros das variáveis cinemáticas da marcha (tais como aceleração, velocidade angular, angulações dos membros sensoriados) para estudos e acompanhamento mais detalhado da sua recuperação e/ou tratamento. Como resultado, o sistema desenvolvido obteve erros médios de X 0,52º Y 1,20º Z 1,80º e erros em RMS de X 3,01º Y 3,30º Z 5,70º quando comparados com um sistema comercial, sendo esse resultado próximo à literatura e aplicável em exames biomecânicos de marcha. / The human gait is a cyclical pattern of body movements that are repeated every step that moves a subject from one location to another. Currently, biomechanical assessments of human gait has been used for diagnosing neuromuscular disorders, musculoskeletal and as a way of pre and post-surgical treatment, medication and/or physical therapy. This paper presents the development of a low cost academic tool for the study of human gait. This system consists of sensing the motion of a user through inertial sensors and a virtual model of the human body to allow the visualization of the generated movement. In this way, the user can have its actions corrected by his visual perception and also corrected by therapist or physiotherapist who will visualize the virtual model as the detailed movements of patient. The system will also record the kinematic gait variables (as acceleration, angular velocity, angles of the sensed members) for studies and more detailed monitoring of their recovery and/or treatment. As result, the developed system obtained average errors of X 0,52º Y 1,20º Z 1,80º and errors in RMS X 3,01º Y 3,30º Z 5,70º compared to a commercial system, and these results close to the ones seen in literature and applicable in biomechanical tests of gait.
210

Diferenças na estimativa do torque muscular máximo de extensão de joelho utilizando parâmetros da literatura e parâmetros mensurados diretamente de indivíduos com mais de 55 anos / Differences on estimated moment of knee extension using parameters from the literature and directly measured parameters of over 55 years womens

Brodt, Guilherme Auler January 2013 (has links)
Contextualização: Uma das formas de conhecimento da função muscular se dá por meio de modelos biomecânicos que utilizam parâmetros como área de secção transversa fisiológica (ASTF), comprimento de fascículo e ângulo de penação para a mensuração da força isométrica máxima dos músculos. Os modelos biomecânicos normalmente empregam arquitetura de cadáveres e ignoram as características específicas da população estudada. Por esta razão, podem ser imprecisos na estimativa. Objetivo: Comparar o torque isométrico máximo de extensão de joelho de mulheres com mais de 55 anos com a estimativa de torque utilizando modelo biomecânico, utilizando parâmetros de cadáveres e utilizando parâmetros musculares mensurados diretamente. Metodologia: Quinze voluntárias com idade superior a 55 anos realizaram contrações voluntárias máximas isométricas (CVMI) de extensão de joelho em quatro ângulos (15°, 45°, 75° e 105°). Foram coletadas imagens de ultrassonografia de ASTF, comprimento de fascículo e ângulo de penação dos músculos do quadríceps. Esses parâmetros foram utilizados no modelo de Arnold et al. (2010) para estimar o torque individual das voluntárias nas mesmas condições da CVMI.. Os resultados de torque experimental, torque estimado individual (arquitetura individual) e torque estimado genérico (arquitetura dos cadáveres) foram comparados por meio de ANOVA de Friedman (α<0,05) e desdobramento post-hoc de Wilcoxon, índice de significância corrigido de α<0,0167 foi adotado após correção de Bonferroni. Além disso, foi realizada a análise gráfica de Bland-Altman (1986), regressão linear, índice de correlação intraclasse (ICC) e erro RMS para identificar qual técnica se assemelha mais ao torque experimental. Resultados e Discussão: O torque estimado individualmente previu corretamente o torque experimental nos ângulos de 45°, 75° e 105°. O torque estimado genérico previu corretamente o torque experimental nos ângulos 75° e 105°. Ambas as estimativas apresentaram tendências de superestimar os valores experimentais. Sendo que o torque estimado individual apresentou menor erro RMS e menor ICC. Após a correção da distância perpendicular muscular utilizada no modelo pela apresentada por Krevolin, Pandy e Pearce (2004) para mulheres, o pico do torque estimado individualmente apresentou-se no mesmo ângulo do torque coletado (75°). Conclusão: A estimativa com dados de arquitetura individualizados aumenta o grau acerto da técnica em um dos ângulos coletados, entretanto, a correlação entre os dados experimentais e aqueles oriundos do modelo individualizado não foi maior que aquela obtida entre os dados experimentais e os dados oriundos do modelo genérico. / Background: One way to know the muscle function is by biomechanical models that use parameters such as physiological cross-sectional area (PCSA) , fascicle length and penation angle for the estimation maximum isometric muscle force. Biomechanical models typically employ generic architecture parameters from cadaveric studies and ignore the specific characteristics of the studied population. For this reason, the estimation may be inaccurate. Objective: Compare the maximum isometric knee extension moment in women over 55 years with the estimated moment using a biomechanical model, using: (1) muscle parameters from cadaveric studies and (2) muscle parameters measured directly. Methods: Fifteen volunteers aged over 55 years did maximum isometric voluntary contraction (MIVC) of knee extension at four angles (15°, 45°, 75° and 105°). Ultrasound images of PCSA, fascicle length and penation angle of the quadriceps femoris muscles were acquired. These parameters were used in the model of Arnold et al. (2010) to estimate the individual voluntary moment of the same conditions of MIVC. The experimental moments were compared with the estimated moment and with generic architecture, collected from cadaveric studies (Ward et al., 2009). The results experimental moment, individual estimated moment (individual architecture) and generic estimated moment (architecture from cadavers form Ward et al., (2009)) were compared using Friedman's ANOVA (α<0.05) and Wilcoxon’s post-hoc (α<0.0167 - Bonferroni’s correction). Furthermore, the following analysis were performed: graphical analysis and Bland-Altman (1986), linear regression, intraclass correlation coefficient (ICC) and RMS error to identify which technique is more similar to the experimental moment. Results and Discussion: The moment estimated individually correctly predicted the experimental moment at 45°, 75° and 105°. The generic moment estimation agreed with the experimental moment at 75° and 105°. Both estimations presented tendencies to overestimate the experimental moment. The individual estimation presented lower RMS error and lower ICC. After correction of the muscle moment arm used in the model for the presented by Krevolin , Pandy and Pearce (2004 ), the peak angle of estimated moment was presented at the same angle of the experimental moment (75°). Conclusion: The estimate with individualized data architecture increases the degree of agreement in one of the angles. However, the correlation between the experimental data and those from the individualized model was not greater than that obtained by the generic estimation.

Page generated in 0.0731 seconds