• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 65
  • 11
  • 8
  • 7
  • 6
  • 6
  • 4
  • 3
  • 2
  • 1
  • Tagged with
  • 125
  • 31
  • 21
  • 18
  • 18
  • 18
  • 15
  • 13
  • 13
  • 12
  • 12
  • 11
  • 11
  • 11
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Development of a Novel Method for the Preparation of N-Boc-Imines from N-Boc-Aminals / Boc保護アミナールを用いたBoc保護イミンの新規調製法の開発

Kobayashi, Ryohei 23 March 2016 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第19518号 / 理博第4178号 / 新制||理||1600(附属図書館) / 32554 / 京都大学大学院理学研究科化学専攻 / (主査)教授 丸岡 啓二, 教授 時任 宣博, 教授 大須賀 篤弘 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DGAM
32

Additions stéréosélectives sur des imines : accès aux amines hétérocycliques a[alpha]-chirales

Tannous, Jad January 2009 (has links)
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal.
33

Additions stéréosélectives sur des imines : accès aux amines hétérocycliques a[alpha]-chirales

Tannous, Jad January 2009 (has links)
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal
34

Electrochemical in-situ polymerization of graphene oxide/conducting star copolymer nanocomposite as supercapacitor electrode

Elgmati, Rugia Ali January 2017 (has links)
>Magister Scientiae - MSc / These days there are deep concerns over the environmental consequences of the rate of consumption of energy from non-renewable sources because of the accelerated increase in greenhouse effect. There is, therefore, increasing interest in research activities on renewable energy systems (e.g., supercapacitors, batteries, fuel cells and photovoltaic cells) and their materials. Supercapacitor materials have attracted much attention because of their high energy storage capacity, large surface area, high specific power density (watts/kg) and low cost. The development of advanced supercapacitor devices requires active electrode materials with high storage capacity and dispensability. Graphene oxide-dendritic star copolymer nanocomposites are fascinating as electrode materials, both scientifically and technologically, due to their exceptional properties, including light weight and high potential. / 2020-08-31
35

Generation of coordination architectures from dynamic covalent ligand libraries / Génération d'architectures de coordination à partir de ligands dynamiques covalents

Holub, Jan 28 September 2016 (has links)
La Chimie Dynamique Combinatoire basée sur les liaisions imines (-C=N-), avec l’aide de la chimie de coordination, donne accès à différentes types d’architectures metallosupramoléculaires et de réseaux dynamiques fonctionnels. Le travail effectué au cours de cette thèse traite de ces deux aspects. Dans un premier temps des structures de types grilles moléculaire et de type hélicate ont été synthétisés, à l’aide de métaux donnant une coordination octahédrale ou tétraédrale, et leurs propriétés dans un environnement dynamique ont été étudiées. Dans un deuxième temps des réseaux dynamiques, présentant des relations agoniste/antagoniste à travers l’échange des constituants aldéhydes et amines/hydrazines réseau, ont été étudiés. Ces systèmes permettent, à travers l’amplification d’un ou plusieurs constituants, une rééquilibration du réseau permettant l’implémentation de fonction tel que l’apprentissage et la prise de décision pour ces systèmes chimiques adaptifs. Un nouveau système, est présenté et étudié ici, permettant une redistribution stable même après le retrait du stimuli métallique (ajout/retrait d’un métal), permettant à ce système de réaliser un processing d’information : apprentissage, stockage, rappel et effacement. / Dynamic Combinatorial Chemistry of imine-based dynamic covalent bonds (-C=N-), under the governance of coordination chemistry, can lead to different metallosupramolecular architectures and responsive functional systems. In this work these two aspects have been approached. Grids and helicates architectures based on aldehydes and amines/hydrazines backbones have been synthesised, in order to probe their behaviour in a dynamic network environment, using both octahedral and tetrahedral coordinating metal cations. Dynamic systems can be also represented by dynamic networks that define agonistic and antagonistic relationships between different constituents linked through component exchange. These networks can be switched through amplification of the best fittest constituent(s) in a dynamic set, allowing to access higher level functions such as training, learning, and decision making for adaptive chemical systems. A novel multi responsive system, able to be trained for information storage, has been studied, exhibiting a stable distribution even after removal of the metal stimuli, making this system able to perform information processing operations: training, storage, recall, and erase.
36

Synthesis and electrochemistry of novel conducting dendrimeric star copolymers on poly(propylene imine) dendrimer

Baleg, Abd Almonam Abd Alsalam January 2011 (has links)
<p>One of the most powerful aspects of conducting polymers is their ability to be nanostructured through innovative, synthetically manipulated, transformations, such as to tailor-make the polymers for specialized applications. In the exponentially increasing wide field of nanotechnology, some special attention is being paid to innovative hybrid dendrimer-core based polymeric smart materials. Star copolymers are a class of branched macromolecules having a central core with multiple linear polymer chains extending from the core. This intrinsic structural feature yields a unique 3D structure with extended conjugated linear polymer chains, resulting in star copolymers, which have higher ionic conductivities than their corresponding non-star conducting polymer counterparts. In this study an in-depth investigation was carried out into the preparation and characterization of specialized electronic &lsquo / smart materials&rsquo / . In particular, the preparation and characterization of novel conducting dendrimeric star copolymers which have a central poly(propylene imine) (PPI) dendrimer core with conducting polypyrrole (PPy) chains extending from the core was carried out. This involved, first, the preparation of a series of dendrimeric polypyrrole poly(propylene imine) star copolymers (PPI-co-PPy), using generations 1 to 4 (G1 to G4) PPI dendrimer precursors. The experimental approach involved the use of both chemical and electrochemical synthesis methods. The basic procedure involved a condensation reaction between the primary amine of a diamino functional PPI dendrimer surface and 2-pyrrole aldehyde, to afford the pyrrole functionalized PPI dendrimer (PPI-2Py). Polymerization of the intrinsically contained monomeric Py units situated within the dendrimer backbone was achieved via two distinctly different routes: the first involved chemical polymerization and the second was based on potentiodynamic oxidative electrochemical polymerization. The star copolymers were then characterized using various sophisticated analytical techniques, in-situ and ex-situ. Proton nuclear magnetic resonance spectroscopy (1HNMR) and Fourier transform infrared spectroscopy (FTIR) were used to determine the structures. Scanning electron microscopy (SEM) was used to determine the morphology. Themogravimetric analysis (TGA) was used to study the thermal stability of the prepared materials. X-ray diffraction analysis (XRD) was used to study the structural make-up of phases, crystallinity and amorphous content. Hall effect measurements were carried out to determine the electrical conductivity of the chemically prepared star copolymers. The PPI-co-PPy exhibited improved thermal stability compared to PPI-2Py, as confirmed by TGA. SEM results showed that the surface morphology of the functionalized dendrimer and star copolymer differed. The surface morphology of the chemically prepared star copolymers resembled that of a flaky, waxy material, compared to the ordered morphology of the electrochemically grown star copolymers, which resembled that of whelk-like helixes. In the case the electrochemically grown star copolymers, SEM images recorded at higher magnifications showed that the whelk-like helixes of the star copolymers were hollow tubes with openings at their tapered ends, and had an average base diameter of 2.0 &mu / m. X-ray diffraction analysis of the first generation star copolymer G1PPI-co-PPy revealed a broadly amorphous structure associated with PPy, and crystalline peaks for PPI. Cyclic voltammetry (CV), square wave voltammetry (SWV) and electrochemical impedance spectroscopy (EIS) techniques were used to study and model the electrochemical reactivity of the star copolymer materials. Electrochemical impedance spectroscopy data showed that the G1PPI-co-PPy exhibited slightly higher ionic conductivity than pristine PPy in lithium perchlorate. The second generation star copolymer G2PPI-co-PPy electrochemically deposited on a platinum (Pt) electrode had a lower electrochemical charge transfer resistance compared to electrodeposited polypyrrole (PPy) on a Pt electrode, and bare Pt. The decrease in charge transfer resistance was attributed to an increase in the conjugation length of the polymer as a result of the linking of the highly conjugated PPy to the PPI dendrimer. Bode impedimetric analysis indicated that G2PPI-co-PPI was a semiconductor, with a maximum phase angle shift of 45.3&deg / at 100 MHz. The star copolymer exhibited a 2- electron electrochemistry and a surface coverage of 99%. Results of Hall effect measurements showed that the star copolymer is a semiconducting material, having a conductivity of 0.7 S cm-1, in comparison to the 1.5 S cm-1 of PPy. To the best of my knowledge, these new star copolymers have not been reported in the open literature. Their properties make them potentially applicable for use in biosensors.</p>
37

Synthesis and electrochemistry of novel conducting dendrimeric star copolymers on poly(propylene imine) dendrimer

Baleg, Abd Almonam Abd Alsalam January 2011 (has links)
<p>One of the most powerful aspects of conducting polymers is their ability to be nanostructured through innovative, synthetically manipulated, transformations, such as to tailor-make the polymers for specialized applications. In the exponentially increasing wide field of nanotechnology, some special attention is being paid to innovative hybrid dendrimer-core based polymeric smart materials. Star copolymers are a class of branched macromolecules having a central core with multiple linear polymer chains extending from the core. This intrinsic structural feature yields a unique 3D structure with extended conjugated linear polymer chains, resulting in star copolymers, which have higher ionic conductivities than their corresponding non-star conducting polymer counterparts. In this study an in-depth investigation was carried out into the preparation and characterization of specialized electronic &lsquo / smart materials&rsquo / . In particular, the preparation and characterization of novel conducting dendrimeric star copolymers which have a central poly(propylene imine) (PPI) dendrimer core with conducting polypyrrole (PPy) chains extending from the core was carried out. This involved, first, the preparation of a series of dendrimeric polypyrrole poly(propylene imine) star copolymers (PPI-co-PPy), using generations 1 to 4 (G1 to G4) PPI dendrimer precursors. The experimental approach involved the use of both chemical and electrochemical synthesis methods. The basic procedure involved a condensation reaction between the primary amine of a diamino functional PPI dendrimer surface and 2-pyrrole aldehyde, to afford the pyrrole functionalized PPI dendrimer (PPI-2Py). Polymerization of the intrinsically contained monomeric Py units situated within the dendrimer backbone was achieved via two distinctly different routes: the first involved chemical polymerization and the second was based on potentiodynamic oxidative electrochemical polymerization. The star copolymers were then characterized using various sophisticated analytical techniques, in-situ and ex-situ. Proton nuclear magnetic resonance spectroscopy (1HNMR) and Fourier transform infrared spectroscopy (FTIR) were used to determine the structures. Scanning electron microscopy (SEM) was used to determine the morphology. Themogravimetric analysis (TGA) was used to study the thermal stability of the prepared materials. X-ray diffraction analysis (XRD) was used to study the structural make-up of phases, crystallinity and amorphous content. Hall effect measurements were carried out to determine the electrical conductivity of the chemically prepared star copolymers. The PPI-co-PPy exhibited improved thermal stability compared to PPI-2Py, as confirmed by TGA. SEM results showed that the surface morphology of the functionalized dendrimer and star copolymer differed. The surface morphology of the chemically prepared star copolymers resembled that of a flaky, waxy material, compared to the ordered morphology of the electrochemically grown star copolymers, which resembled that of whelk-like helixes. In the case the electrochemically grown star copolymers, SEM images recorded at higher magnifications showed that the whelk-like helixes of the star copolymers were hollow tubes with openings at their tapered ends, and had an average base diameter of 2.0 &mu / m. X-ray diffraction analysis of the first generation star copolymer G1PPI-co-PPy revealed a broadly amorphous structure associated with PPy, and crystalline peaks for PPI. Cyclic voltammetry (CV), square wave voltammetry (SWV) and electrochemical impedance spectroscopy (EIS) techniques were used to study and model the electrochemical reactivity of the star copolymer materials. Electrochemical impedance spectroscopy data showed that the G1PPI-co-PPy exhibited slightly higher ionic conductivity than pristine PPy in lithium perchlorate. The second generation star copolymer G2PPI-co-PPy electrochemically deposited on a platinum (Pt) electrode had a lower electrochemical charge transfer resistance compared to electrodeposited polypyrrole (PPy) on a Pt electrode, and bare Pt. The decrease in charge transfer resistance was attributed to an increase in the conjugation length of the polymer as a result of the linking of the highly conjugated PPy to the PPI dendrimer. Bode impedimetric analysis indicated that G2PPI-co-PPI was a semiconductor, with a maximum phase angle shift of 45.3&deg / at 100 MHz. The star copolymer exhibited a 2- electron electrochemistry and a surface coverage of 99%. Results of Hall effect measurements showed that the star copolymer is a semiconducting material, having a conductivity of 0.7 S cm-1, in comparison to the 1.5 S cm-1 of PPy. To the best of my knowledge, these new star copolymers have not been reported in the open literature. Their properties make them potentially applicable for use in biosensors.</p>
38

Synthesis and electrochemistry of novel conducting dendrimeric star copolymers on poly(propylene imine) dendrimer

Baleg, Abd Almonam Abd Alsalam January 2011 (has links)
Philosophiae Doctor - PhD / One of the most powerful aspects of conducting polymers is their ability to be nanostructured through innovative, synthetically manipulated, transformations, such as to tailor-make the polymers for specialized applications. In the exponentially increasing wide field of nanotechnology, some special attention is being paid to innovative hybrid dendrimer-core based polymeric smart materials. Star copolymers are a class of branched macromolecules having a central core with multiple linear polymer chains extending from the core. This intrinsic structural feature yields a unique 3D structure with extended conjugated linear polymer chains, resulting in star copolymers, which have higher ionic conductivities than their corresponding non-star conducting polymer counterparts. In this study an in-depth investigation was carried out into the preparation and characterization of specialized electronic smart materials. In particular, the preparation and characterization of novel conducting dendrimeric star copolymers which have a central poly(propylene imine) (PPI) dendrimer core with conducting polypyrrole (PPy) chains extending from the core was carried out. This involved, first, the preparation of a series of dendrimeric polypyrrole poly(propylene imine) star copolymers (PPI-co-PPy), using generations 1 to 4 (G1 to G4) PPI dendrimer precursors. The experimental approach involved the use of both chemical and electrochemical synthesis methods. The basic procedure involved a condensation reaction between the primary amine of a diamino functional PPI dendrimer surface and 2-pyrrole aldehyde, to afford the pyrrole functionalized PPI dendrimer (PPI-2Py). Polymerization of the intrinsically contained monomeric Py units situated within the dendrimer backbone was achieved via two distinctly different routes: the first involved chemical polymerization and the second was based on potentiodynamic oxidative electrochemical polymerization. The star copolymers were then characterized using various sophisticated analytical techniques, in-situ and ex-situ. Proton nuclear magnetic resonance spectroscopy (1HNMR) and Fourier transform infrared spectroscopy (FTIR) were used to determine the structures. Scanning electron microscopy (SEM) was used to determine the morphology. Themogravimetric analysis (TGA) was used to study the thermal stability of the prepared materials. X-ray diffraction analysis (XRD) was used to study the structural make-up of phases, crystallinity and amorphous content. Hall effect measurements were carried out to determine the electrical conductivity of the chemically prepared star copolymers. The PPI-co-PPy exhibited improved thermal stability compared to PPI-2Py, as confirmed by TGA. SEM results showed that the surface morphology of the functionalized dendrimer and star copolymer differed. The surface morphology of the chemically prepared star copolymers resembled that of a flaky, waxy material, compared to the ordered morphology of the electrochemically grown star copolymers, which resembled that of whelk-like helixes. In the case the electrochemically grown star copolymers, SEM images recorded at higher magnifications showed that the whelk-like helixes of the star copolymers were hollow tubes with openings at their tapered ends, and had an average base diameter of 2.0 mu;m. X-ray diffraction analysis of the first generation star copolymer G1PPI-co-PPy revealed a broadly amorphous structure associated with PPy, and crystalline peaks for PPI. Cyclic voltammetry (CV), square wave voltammetry (SWV) and electrochemical impedance spectroscopy (EIS) techniques were used to study and model the electrochemical reactivity of the star copolymer materials. Electrochemical impedance spectroscopy data showed that the G1PPI-co-PPy exhibited slightly higher ionic conductivity than pristine PPy in lithium perchlorate. The second generation star copolymer G2PPI-co-PPy electrochemically deposited on a platinum (Pt) electrode had a lower electrochemical charge transfer resistance compared to electrodeposited polypyrrole (PPy) on a Pt electrode, and bare Pt. The decrease in charge transfer resistance was attributed to an increase in the conjugation length of the polymer as a result of the linking of the highly conjugated PPy to the PPI dendrimer. Bode impedimetric analysis indicated that G2PPI-co-PPI was a semiconductor, with a maximum phase angle shift of 45.3&deg; at 100 MHz. The star copolymer exhibited a 2- electron electrochemistry and a surface coverage of 99%. Results of Hall effect measurements showed that the star copolymer is a semiconducting material, having a conductivity of 0.7 S cm-1, in comparison to the 1.5 S cm-1 of PPy. To the best of my knowledge, these new star copolymers have not been reported in the open literature. Their properties make them potentially applicable for use in biosensors. / South Africa
39

Synthesis and Studies of Dendritic Poly (Ether Imine) Boronates and Cholesteryl-Functionalized Mesogens

Prabhat, Kumar January 2015 (has links) (PDF)
Synthesis and Studies of Dendritic Poly(Ether Imine) Boronates and Cholesteryl-Functionalized Mesogens SYNOPSIS Dendrimers are hyperbranched synthetic macromolecules having branches-upon-branches structures, high molecular weights, globular shapes and monodispersities. Dendrimers possess a large number of modifiable functional groups at their peripheries. Initial efforts were largely concerned with the synthesis, design and development of new dendrimers. Exploring the chemical, biological and material applicability of these macromolecules are relevant to current interests, as a result of the unique structural features of dendrimers. Incorporation of transition metals and organic moieties at the peripheries of the dendrimers was studied to determine their efficacies in catalysis. Evolution of dendritic effects was observed in few instances, that were non-linear in nature. On the other hand, dendritic peripheries were also utilized to study mesogenic properties in liquid crystals. Chapter 1 of the Thesis gives an overview of the types of dendrimers, its structural features and their application in catalysis and as liquid crystalline materials. Chapter 2 describes the synthesis of a new type of poly(ethyl ether imine) dendrimer, having nitrogen as a branching unit, ethylene moiety as the spacer and an oxygen as the connecting linker. Synthesis, characterization, and studies of the photophysical properties of these dendrimers are described in this chapter. The molecular structure of second generation dendrimer is shown in Figure 1. Synthesis of this dendrimer was initiated using 2,2'-oxy-bis(ethan-1¬amine) as the core. The reaction sequence of two alternate nucleophilic substitutions and two alternate reductions, involving ethyl bromoacetate and bromoacetonitrile as monomers was employed in the synthesis of the dendrimer. The formation of dendrimers having ether linkage and tertiary amines as branching unit was established by spectroscopies and mass spectrometry. A number of functional groups, such as, acid, alcohol, amine, ester and nitrile are present at the peripheries of each generation the dendrimers that open up the possibilities for further studies. Carboxylic acid terminated poly(ethyl ether imine) dendrimers are substituted iminodiacetic acids, belonging to the class of polyaminocarboxylic acid. Methyl iminodiacetic acid boronates with NB coordination have emerged as an excellent substitute for unstable boronic acids. Upon increasing the steric bulk on the nitrogen moiety, the hydrolytic stability of the boronates to a base-catalyzed hydrolysis is increased. Combining the structure of carboxylic acid terminated dendrimer and the stability of the dendritic boronates, such dendritic iminodiacetic acids were reacted with arylboronic acids to prepare bis-and tetrakis-boronates (Figure 2). Kinetic hydrolytic studies of boronates were conducted to assess the stabilities of the newly synthesized dendritic boronates. From the studies it was observed that the tetrakis-boronate was ~20 times more stable in comparison with dimeric and monomeric boronates (Figure 3). Subsequent to synthesis and hydrolytic stability studies, C-C bond-forming Suzuki-Miyaura cross-coupling reactions were conducted. A comparison of the reactivities among monomeric, dimeric and tetrameric arylboronates in C-C bond-forming reactions showed a higher reactivity of monomeric and dimeric boronates, than the tetrameric aryl boronate to construct ter-and tetra-aryl in one-pot iterative manner (Figure 4). Chapter 3 of this Thesis describes the synthesis and characterization of dendritic boronates and studies of their hydrolytic stability in Suzuki-Miyaura cross¬coupling reactions to construct ter-and tetraaryls. Figure 4. Synthesis of (a) ter-(6) and (b) tetra-aryls (7) by following one-pot iterative cross-coupling reactions. Step-wise iterative synthesis of dendrimer allows a uniform branching throughout the structure. The first and second generation poly(ether imine) dendrimer series, having hydroxyl groups at their peripheries were chosen for further modification. A versatile mesogenic group, namely, cholesterol was covalently attached at the peripheries of the dendrimers with succinic moiety as linker, so as to install 4 and 8 cholesteryl moieties at the peripheries of the dendrimers (Figure 5), that were characterized by H, C NMR spectroscopies and elemental analysis, so as to confirm their structural homogeneities. Figure 5. Molecular structures of the first and second generation dendritic mesogens. Subsequent to synthesis and characterization, liquid crystalline properties of all the dendritic mesogens was assessed through differential scanning calorimetry (DSC), polarizing optical microscopy (POM) and X-ray diffraction (XRD) studies. In POM study, broken fan or leaf like texture revealed the lamellar arrangement, whereas homeotropic appearance of texture on surfactant (cetyltrimethylammonium bromide) coated substrate indicated the lamellar nature of G1-Et-(OCS)4, G1-Pr-(OCS)4 and G2-Pr-(OCS)8 (Figure 6). From DSC studies, the change in enthalpy was found to increase with increase in generation and change in enthalpy per mesogenic unit was found to be ~ -1 1-2 kJ mol, which indicated the mesophase arrangement to be lamellar. Decrease in the length of spacer dendritic backbone and increase in the generation increased the isotropization temperature of the dendritic liquid crystals. Variable temperature XRD studies were undertaken to characterize the mesophase property. Two sharp peaks in small angle region and a diffused halo in wide angle region in XRD pattern of the material suggested the smectic A (SmA) liquid crystalline arrangement of G1-Et-(OCS)4, G1-Pr-(OCS)4 and G2-Pr-(OCS)8 (Figure 7). Figure 6. POM textures of (a) G1-Et-(OCS)4 at 136 oC; (b) G2-Et-(OCS)8 at 129 oC; (c) G1-Pr-(OCS)4 at 92 oC; (d) G2-Pr-(OCS)8 at 118 oC and (e) transition temperatures for dendromesogens (DSC second heating cycle, heating-cooling rate = 10 oC min-1). Figure 7. Small angle XRD profiles of: (a) G1-Pr-(OCS)4 and (b) G2-Et-(OCS)8 at 60 o C (black), 150 oC (red) and 180 oC (green), (Insets: Lorentzean fit of wide angle peak). The second generation ethyl-linker dendrimer G2-Et-(OCS)8 exhibited a layered structure with a superimposed in-plane modulation (SmÃ), the length of which corresponded to a rectangular column width. Chapter 4 describes the synthesis, characterization and studies of mesophase property and fluorescence property of cholesterol functionalized homologous pairs of the PETIM dendritic liquid crystals. Peripheral functionalization of the dendrimers provides an easy access to dendritic liquid crystalline materials. The covalent functionalization was extended further with the dendrimers for both the series, so as to have 2, 4, 8 and 16 cholesteryl groups at the peripheries of 0, 1, 2 and 3 generation dendrimers, respectively, having succinic amide and phthalic ester functionalities for 1, 2 and 3 generation dendrimers with 4, 8 and 16 cholesteryl groups. Molecular structures of third generation dendrimers are shown in Figure 8. Figure 8. Molecular structures of third generation G3-Pr-(NHCS)16 and G3-Pr-(OCP)16. Subsequent to synthesis and characterization, mesophase property was studied through POM, DSC and XRD techniques. In POM study, a birefringent texture was observed in heating and cooling cycles. Leaflet, broken fan or bâtonnet like texture suggested the layered arrangement of the molecules (Figure 9). In DSC studiues, it was observed that the amide-linked dendrimers showed higher glass transition and isotropization temperatures than that of ester-linked dendrimers within the same generation irrespective of the back-bone of the dendrimer. Succinic moiety linked dendrimers showed lower glass transition temperature than that of phthalic moiety linked dendrimers and consequently, larger mesophase range. The change in enthalpy for isotropization was found to increase with increase in generation, whereas change in -1 enthalpy per mesogenic unit was 1-2 kJ mol, indicative of a layered arrangement in the mesophase. Figure 9. POM textures (20x) of (a) G3-Pr-(NHCS)16 at 90 oC; (b) G3-Pr-(OCS)16 at 90 ooo C; (c) PG1-(NHCS)4 at 134 C; (d) G3-Pr-(OCP)16 at 98 C and (e) transition temperatures for dendromesogens (second cycle, heating-cooling rate = 10 oC min-1). Appearance of two sharp peaks in small angle region and a wide halo in wide angle region in XRD pattern supported lamellar mesophase property of the material (Figure 10). On decreasing the temperature, increase in the layer thickness also suggested the smectic A arrangement of the molecules except third generation phthalate derivative G3-Pr-(OCP)16, which showed rectangular columnar mesophase. For all the dendromesogens, the layer thickness increased with the increase in generation. Upon protonation, the first generation dendrimer showed a change in mesophase from simple smectic A to modulated smectic A with decrease in layer thickness. The change in liquid crystal property of the dendromesogens from lamellar to columnar mesophase by changing the linker of the mesogen is unknown so far in the dendrimer liquid crystals. Chapter 5 gives details of synthesis, characterization and mesophase property study of ester-and amide-linked dendritic liquid crystals. Overall, the Thesis establishes a synthetic methodology for the synthesis of a new homologous series of poly(ether imine) dendrimers with ethyl spacer; synthesis of dendritic boronates and their studies in cross-coupling reactions through in-situ slow release of boronic acid; hydrolytic stability study showed higher stability of dendritic boronates which was used in one-pot iterative cross-coupling reactions to construct ter-and tetra-aryls. decrease in linker length in dendrimer backbone modified the thermal, as well as, mesophase behavior of the dendritic liquid crystals; change in the linker functionality from ester to amide changed the thermal behavior of dendritic liquid crystals; a switching of mesophase property from lamellar to columnar was observed by changing the rigidity of the linker from succinate to phthalate without changing the linker length. The results of the above chapters are in different stages of publications: 1 Dendritic iminodiacetic acids and their boronates in Suzuki-Miyaura cross¬coupling reactions. Sharma, A.; Kumar, P.; Pal, R.; Jayaraman, N. Revised Manuscript submitted. 2 In-plane modulated smectic à vs smectic A lamellar structures in homologous pairs of dendritic liquid crystals. Kumar, P.; Rao, D. S. S.; Prasad, S. K.; Jayaraman, N. Revised Manuscript submitted. 3 Effect of protonation on dendritic liquid crystals of poly(ether imine) dendrimers: structure property relationship studies. Kumar, P.; Rao, D. S. S.; Prasad, S. K.; Jayaraman, N. Manuscript submitted. 4 Smectic to rectangular columnar switch from succinic to phthalic linker alteration in poly(ether imine) dendritic liquid crystals. Kumar, P.; Rao, D. S. S.; Prasad, S. K.; Jayaraman, N. Manuscript in preparation.
40

Synthesis and nanostructuring modulations of self-assembled dynamic covalent amphiphiles / Synthèse et nano-modulations d'amphiphiles dynamiques auto-assemblés

Zanirati, Stefano 13 December 2013 (has links)
Contrôler les forces supramoléculaires et chirales a toujours été un défi pour la communauté scientifique. Dynablocks sont amphiphile basés sur des liaisons covalentes réversibles (imine) qui, dans l’eau, s’auto–assemblent en mésophases. Avec un nouveaux aldéhydes chargés et avec divers types d'amines (pKa et chaînes de PEG variables) dynablocks chargées ont été utilisés pour ajuster les surfaces micellaires (inversion noyau/coquille). Nous avons également étudié les propriétésd'auto-réplication (autopoiesis) et leur intérêt pour les premiers réplicateurs de la Terre prébiotique. Dynablocks non chargés ont plutôt été utilisés pour l'étude des structures à haute concentration et pour l’amplification chirale. Dans ce dernier,peptides amphiphiles dynablocks agissaient comme gelators avec une matrice formée d’un réseau 3D entrelacé. Une torsion supramoléculaire a été observée et une amplification chirale au niveau de la morphologie des structures a pu être détectée par AFM et TEM. / Taking the control over supramolecular and chiral forces has always been a challenge for the scientific community. Dynablocks are amphiphiles based on reversible imine covalent bond that, in water, self-assemble in mesophases. With a new charged aldehyde, charged dynablocks were used to tune the surface of the assemblies directing the charged heads inward or outward, changing the PEG units and the pKa of the amines. Moreover, we continued the study on focusing the interest on self-replicating properties (autopoiesis), topic that provides insights for the first replicators that could have appeared in the prebiotic Earth. Non-charged dynablocks were instead employed for the study of structures in high concentration and for chiral amplification. In this latter, peptide amphiphilic dynablocks acted as gelators with a typical 3D intertwined network matrix. A supramolecular twist was observed and a chiral amplification in the structures morphologies was detected in AFM and TEM pictures.

Page generated in 0.0495 seconds