• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 221
  • 71
  • 49
  • 24
  • 8
  • 6
  • 4
  • 3
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 476
  • 86
  • 56
  • 52
  • 51
  • 47
  • 41
  • 41
  • 38
  • 35
  • 33
  • 32
  • 32
  • 29
  • 29
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
171

On the minimal number of periodic Reeb orbits on a contact manifold

Gutt, Jean 27 June 2014 (has links) (PDF)
Le sujet de cette thèse est la question du nombre minimal d'orbites de Reeb distinctes sur une variété de contact qui est le bord d'une variété symplectique compacte. L'homologie symplectique $S^1$-équivariante positive est un des outils principaux de cette thèse; elle est construite à partir d'orbites périodiques de champs de vecteurs hamiltoniens sur une variété symplectique dont le bord est la variété de contact considérée. Nous analysons la relation entre les différentes variantes d'homologie symplectique d'une variété symplectique exacte compacte (domaine de Liouville) et les orbites de Reeb de son bord. Nous démontrons certaines propriétés de ces homologies. Pour un domaine de Liouville plongé dans un autre, nous construisons un morphisme entre leurs homologies. Nous étudions ensuite l'invariance de ces homologies par rapport au choix de la forme de contact sur le bord. Nous utilisons l'homologie symplectique $S^1$-équivariante positive pour donner une nouvelle preuve d'un théorème de Ekeland et Lasry sur le nombre minimal d'orbites de Reeb distinctes sur certaines hypersurfaces dans $\R^{2n}$. Nous indiquons comment étendre au cas de certaines hypersurfaces dans certains fibrés en droites complexes négatifs. Nous donnons une caractérisation et une nouvelle façon de calculer l'indice de Conley-Zehnder généralisé, défini par Robbin et Salamon pour tout chemin de matrices symplectiques. Ceci nous a mené à développer de nouvelles formes normales de matrices symplectiques.
172

Measurement invariance of health-related quality of life: a simulation study and numeric example

Sarkar, Joykrishna 23 September 2010 (has links)
Measurement invariance (MI) is a prerequisite to conduct valid comparisons of Health-related quality of life (HRQOL) measures across distinct populations. This research investigated the performance of estimation methods for testing MI hypotheses in complex survey data using a simulation study, and demonstrates the application of these methods for a HRQOL measure. Four forms of MI were tested using confirmatory factory analysis. The simulation study showed that the maximum likelihood method for small sample size and low intraclass correlation (ICC) performed best, whereas the pseudomaximum likelihood with weights and clustering effects performed better for large sample sizes with high ICC to test configural invariance. Both methods performed similarly to test other forms of MI. In the numeric example, MI of one HRQOL measure in the Canadian Community Health Survey was investigated and established for Aboriginal and non-Aboriginal populations with chronic conditions, indicating that they had similar conceptualizations of quality of life.
173

A Time-varying Feedback Approach to Reach Control on a Simplex

Ashford, Graeme 01 December 2011 (has links)
This thesis studies the Reach Control Problem (RCP) for affine systems defined on simplices. The thesis focuses on cases when it is known that the problem is not solvable by continuous state feedback. Previous work has proposed (discontinuous) piecewise affine feedback to resolve the gap between solvability by open-loop controls and solvability by feedbacks. The first results on solvability by time-varying feedback are presented. Time-varying feedback has the advantage to be more robust to measurement errors circumventing problems of discontinuous controllers. The results are theoretically appealing in light of the strong analogies with the theory of stabilization for linear control systems. The method is shown to solve RCP for all cases in the literature where continuous state feedback fails, provided it is solvable by open loop control. Textbook examples are provided. The motivation for studying RCP and its relevance to complex control specifications is illustrated using a material transfer system.
174

Ensuring Safe Exploitation of Wind Turbine Kinetic Energy : An Invariance Kernel Formulation

Rawn, Barry Gordon 21 April 2010 (has links)
This thesis investigates the computation of invariance kernels for planar nonlinear systems with one input, with application to wind turbine stability. Given a known bound on the absolute value of the input variations (possibly around a fixed non-zero value), it is of interest to determine if the system's state can be guaranteed to stay within a desired region K of the state space irrespective of the input variations. The collection of all initial conditions for which trajectories will never exit K irrespective of input variations is called the invariance kernel. This thesis develops theory to characterize the boundary of the invariance kernel and develops an algorithm to compute the exact boundary of the invariance kernel. The algorithm is applied to two simplified wind turbine systems that tap kinetic energy of the turbine to support the frequency of the grid. One system provides power smoothing, and the other provides inertial response. For these models, limits on speed and torque specify a desired region of operation K in the state space, while the wind is represented as a bounded input. The theory developed in the thesis makes it possible to define a measure called the wind disturbance margin. This measure quantifies the largest range of wind variations under which the specified type of grid support may be provided. The wind disturbance margin quantifies how the exploitation of kinetic energy reduces a turbine's tolerance to wind disturbances. The improvement in power smoothing and inertial response made available by the increased speed range of a full converter-interfaced turbine is quantified as an example.
175

The modernity of Bantu traditional values: testing the invariance hypothesis

Bin Karubi, Kikaya January 1989 (has links)
Thesis (Ph.D.)--Boston University. University Professors Program. / This is a study of the relationship between persistent Bantu traditional values and social, political and economic institutions, using the premises of the Convergence Theory and the Invariance Hypothesis to determine what that relationship should be. Traditional values like the concept of man as a life force, the principle of communalism and the belief in the interaction between the dead, the living and those to be born have remained invariant throughout the history of the Bantu. This, contrary to the prescriptions of the dominant modernization theory which calls for the dismantling of these values once the society faces the so called "universal forces of change," like the introduction of modern industries, the development of means of communications, the growth of urban centers and above all, the development of modern science and technology. We used a descriptive analysis approach to examine the relationship between values and patterns of authority on the one hand and patterns of solidarity on the other. We did this first in the traditional setting. Then we did an analytical content criticism of those values in the colonial and post colonial periods which most people link to the introduction of modernization in Africa. We found out that, despite change in the environment, traditional values stay the same. Change will occur at the structural level but in order for the new institutions to be legitimate, they must reflect the traditional values of the people. This in a way explains the failure of some imposed political and social institutions to function in Africa.
176

Principe d'invariance individuel pour une diffusion dans un environnement périodique. / Individualite invariance principle for diffusions in a periodic environment

Ba, Moustapha 08 July 2014 (has links)
Nous montrons ici, en utilisant les méthodes de l'analyse stochastique, le principe d'invariance pour des diffusion sur $\mathbb{R} ^{d},d\geq 2$, en milieu périodique au delà des hypothèses d'uniforme ellipticité et au delà des hypothèses de régularité sur le potentiel. La théorie du calcul stochastique pour les processus associés aux formes de Dirichlet est largement utilisée pour justifier l'existence du processus de Markov à temps continus, défini pour presque tout point de départ sur $\mathbb{R} ^{d}$. Pour la preuve du principe d'invariance, nous montrons une nouvelle inégalité de type Sobolev avec des poids différents, qui nous permet de déduire l'existence et la bornitude d'une densité de la probabilité de transition associée au processus de Markov. Cette inégalité, est l'outil principal de ce travail. La preuve fera appel à des techniques d'analyse harmonique. Enfin, le chapitre 3 contient le résultat principal du travail de la thèse : le principe d'invariance qui veut dire que la suite de processus $(_{\varepsilon }X_{t\varepsilon ^{-2}})$ converge en loi quand $\varepsilon$ tend vers zéro vers un mouvement Brownien. Notre stratégie suit quelques étapes classiques : nous nous appuyons sur la construction de ce qu'on appelle ici correcteur. Afin de contrôler le correcteur, et aussi pour montrer son existence, nous nous appuyons sur l'inégalité de Sobolev. Le resultat est obenu seulement avec les hypothèses, le potentiel $V$ est périodique et satisfait: $e^{V}+e^{-V}$ locallement dans $L^{1}\left( \mathbb{R} ^{d};dx\right)$ ou $dx$ est la mesure de Lebesgue. / We prove here, using stochastic analysis methods, the invariance principle for a $\mathbb{R} ^{d}$ diffusions $d\geq 2$, in a periodic potential beyond uniform boundedness assumptions of potential. The potential is not assumed to have any regularity. So the stochastic calculus theory for processes associated to Dirichlet forms is used to justify the existence of a continuous Markov process starting from almost all $x\in \mathbb{R} ^{d}$ and denoted by $\left( X_{t},t>0\right)$ (cf chapter 1). In chapter 2, we prove a new Sobolev inequality with different weights by using some materials in harmonic analysis. In chapter 3, we prove the main result (Theorem 1) of this work: the invariance principle. Our strategy for proving Theorem 1 follows some classical steps: we rely on the construction of the so-called corrector. In order to control the corrector, and actually also in order to show its existence, we rely on the Sobolev inequality. All the work is done under the following hypothesis: the potential $V$ is periodic and satisfies $e^{V}+e^{-V}$ are locally in $L^{1}\left( \mathbb{R} ^{d};dx\right)$ where $dx$ is the Lebesgue measure.
177

Difusão singular em um sistema confinado / Singular Diffusion in a Confined System

Pires, Rilder de Sousa January 2013 (has links)
PIRES, Rilder de Sousa. Difusão singular em um sistema confinado. 2013. 64 f. Dissertação (Mestrado em Física) - Programa de Pós-Graduação em Física, Departamento de Física, Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2013. / Submitted by Edvander Pires (edvanderpires@gmail.com) on 2015-10-23T19:14:37Z No. of bitstreams: 1 2013_dis_rspires.pdf: 2524951 bytes, checksum: 2a38032e0c2de28e051d588ecd2b47f3 (MD5) / Approved for entry into archive by Edvander Pires(edvanderpires@gmail.com) on 2015-10-23T19:38:52Z (GMT) No. of bitstreams: 1 2013_dis_rspires.pdf: 2524951 bytes, checksum: 2a38032e0c2de28e051d588ecd2b47f3 (MD5) / Made available in DSpace on 2015-10-23T19:38:52Z (GMT). No. of bitstreams: 1 2013_dis_rspires.pdf: 2524951 bytes, checksum: 2a38032e0c2de28e051d588ecd2b47f3 (MD5) Previous issue date: 2013 / Patterns of scale invariance, associated with power laws, are often found in nature, for instance, in the fluctuations of prices of items in stock markets and in the energy spectrum of turbulent systems. These two systems and many others that exhibit scale invariance present some common properties: they are comprised of several elements that interact in a non-linear way, are not in equilibrium, and exhibit self-organization. Scale invariance is also found in the correlations observed in the critical state of systems that present phase transitions. The concept of self-organized criticality suggests that the properties of invariance spontaneously arise in complex systems. Several models exhibit properties of self-organized critically, including invasion percolation, sand-piles and the trough model, however it is not clear what are the necessary ingredients for criticality to arise. It is known that this property appears in some non-linear diffusive systems. In this work, we introduce a confining potential in a one-dimensional diffusion model with a singular non-linearity on diffusion coefficient, and analyze how this affects in the steady state of the system. We then derive a diffusion equation and obtain a solution for stationary density profile. Our analytical solution is in good agreement with the numerical results. We also present a statistical study of the distribution of avalanches sizes in this model, and obtain profiles following power laws, what is not usually observed in other one-dimensional systems. We also investigated how these profiles vary when the confinement increases, and using finite size scaling we found a universal curve for the distribution of avalanche sizes. Our results show that the action of confinement in a one-dimensional system can yield scale invariance. / Padrões de invariância de escala, associados à leis de potência, são frequentemente observados na natureza. Alguns exemplos são: flutuações em preços de itens de bolsa de valores e outros investimentos, além do espectro de energia em sistemas turbulentos. Esses dois sistemas e vários outros que exibem invariância de escala têm propriedades em comum: compõem-se de vários elementos que interagem de forma não linear, estão fora do equilíbrio e exibem auto-organização. Invariância de escala também é encontrada nas correlações observadas no ponto crítico de sistemas que apresentam transições de fase. O conceito de criticalidade auto-organizada sugere que as propriedades de invariância emergem espontaneamente em sistema complexos. Vários modelos exibem propriedades criticamente auto-organizadas, entre eles percolação invasiva, pilhas de areia e o modelo de desníveis, no entanto, não se sabe ao certo quais os ingredientes necessários para criticalidade emergir. Sabe-se que essa propriedade se manifesta em alguns sistemas difusivos não lineares. Nesse trabalho, introduzimos um potencial confinante em um modelo de difusão unidimensional com uma não linearidade singular no coeficiente de difusão e analisamos a influência dessa mudança no estado estacionário do sistema. Conseguimos, então, derivar uma equação de difusão do modelo e obtemos uma solução para o perfil de densidade. Nossa solução analítica concorda perfeitamente com os resultados numéricos. Fizemos, ainda, um estudo estatístico do perfil de avalanches do modelo, e obtemos perfis de avalanche em leis de potência, o que normalmente não é observado em outros sistemas unidimensionais. Analisamos, ainda, como esses perfis variam na medida que se aumenta o confinamento, e usando transformações de escala encontramos uma curva universal para os perfis de distribuição de tamanhos de avalanche. Nossos resultados demonstram que a ação do confinamento em um sistema unidimensional pode levar ao surgimento da invariância de escala.
178

Deformações e invariâncias em modelos supersimétricos em três e quatro dimensões espaçotemporais

Ipia, Carlos Andrés Palechor January 2017 (has links)
Orientador: Prof. Dr. Alysson Fábio Ferrari / Tese (doutorado) - Universidade Federal do ABC, Programa de Pós-Graduação em Física, 2017. / As deformações do espaço-tempo têm sido bastante estudadas desde diferentes abordagens tais como a não comutatividade canônica e deformações via álgebras de Hopf, com a motivação de que estas deformações podem aparecer a escalas de altas energias, como por exemplo a escala de Planck. De igual forma, pode-se buscar estender deformações para a estrutura do superespaço e a supersimetria, e assim estudar o comportamento clássico e quântico, como a invariância supersimétrica e renormalizabilidade, em modelos definidos sobre estas estruturas. Dois tipos de deformações possíveis da supersimetria foram estudadas neste trabalho. O primeiro deles envolve a introdução de um produto não comutativo em (3+1) dimensões, que embora seja um produto não associativo e que quebra a álgebra da supersimetria, permite construir um modelo de Wess-Zumino com correções de derivadas de ordem superior do tipo Lee-wick, e que resultam ser invariante sob as transformações da SUSY usual. O segundo tipo de deformação estudado utiliza o conceito de álgebras de Hopf, através de um twist de Drinfel¿d. No caso do modelo de Wess-Zumino em (2 + 1) dimensões, veremos que apesar de que as estruturas sejam construídas de forma consistente e seja possível preservar a álgebra da SUSY usando geradores deformados, o modelo resulta não ser invariante sob esta última e não renormalizável. Também foi usado o formalismo de twist para um modelo de Chern-simons com SUSY N = 2 em (2 + 1) dimensões, que permite construir um modelo invariante de calibre, no entanto a invariância da SUSY não seja evidente. Neste modelo, embora em principio a álgebra da SUSY pode ser preservada pelo uso de geradores deformados, estes tornam-se bastante complicados, dificultando a prova da invariância supersimétrica. Pode-se concluir que existem diferentes formas de deformar as estruturas algébricas da supersimetria e que devido aos vínculos de cada modelo em específico torna-se difícil a construção de modelos que preservem algumas das propriedades importantes de modelos supersimétricos que se estudam, tais como a invariância e renormalização. / The space-time deformations have been well studied using different approaches, like as canonical commutativity and deformations via Hopf algebras, with the motivation of such deformations can appear in high scale energies, for example, planck scales. The same way, they can extend deformations to superspace and supersymmetry structures, and thus, study the quantum and classical behavior, like as the supersymmetry invariance and renormalizability, in models defined on these structures. Two classes of possible transformation of supersymmetry were studied in this work. The first one involves the introduction of one non commutative product in (3 + 1) dimensions, although it is not associative and breaks the supersymmetry algebra. It allows the construction of a Wess- Zumino model with higher order derivatives corrections like as Lee-Wick models, and it is invariant under usual SUSY transformations. The second deformation class studied utilizes the Hopf algebra concept, through Drinfel¿d twist. In the Wess-Zumino case in (2 + 1) dimensions, we can observe, although, the construction of the algebraic structure is consistent and it is possible preserve the SUSY algebra using deformed generators, the model is not invariant under this last and non renormalizable, also the twist formalism was used to Chern-Simons model N = 2 in (2 + 1) dimensions, it allows to construct an invariant gauge model, however the SUSY invariance is not evident. In this model, although the SUSY algebra can be preserved using the deformed generators, they become complicated, making it difficult to prove the supersymmetric invariance. It is possible to conclude that there are different ways to deform the algebraic structures of supersymmetry and because of the constraints of each specific model, it is difficult the construction of models which preserve some important properties of supersymmetry models studies, like as invariance and renormalizability.
179

Optimal regression design under second-order least squares estimator: theory, algorithm and applications

Yeh, Chi-Kuang 23 July 2018 (has links)
In this thesis, we first review the current development of optimal regression designs under the second-order least squares estimator in the literature. The criteria include A- and D-optimality. We then introduce a new formulation of A-optimality criterion so the result can be extended to c-optimality which has not been studied before. Following Kiefer's equivalence results, we derive the optimality conditions for A-, c- and D-optimal designs under the second-order least squares estimator. In addition, we study the number of support points for various regression models including Peleg models, trigonometric models, regular and fractional polynomial models. A generalized scale invariance property for D-optimal designs is also explored. Furthermore, we discuss one computing algorithm to find optimal designs numerically. Several interesting applications are presented and related MATLAB code are provided in the thesis. / Graduate
180

Approaches to Studying Measurement Invariance in Multilevel Data with a Level-1 Grouping Variable

January 2016 (has links)
abstract: Measurement invariance exists when a scale functions equivalently across people and is therefore essential for making meaningful group comparisons. Often, measurement invariance is examined with independent and identically distributed data; however, there are times when the participants are clustered within units, creating dependency in the data. Researchers have taken different approaches to address this dependency when studying measurement invariance (e.g., Kim, Kwok, & Yoon, 2012; Ryu, 2014; Kim, Yoon, Wen, Luo, & Kwok, 2015), but there are no comparisons of the various approaches. The purpose of this master's thesis was to investigate measurement invariance in multilevel data when the grouping variable was a level-1 variable using five different approaches. Publicly available data from the Early Childhood Longitudinal Study-Kindergarten Cohort (ECLS-K) was used as an illustrative example. The construct of early behavior, which was made up of four teacher-rated behavior scales, was evaluated for measurement invariance in relation to gender. In the specific case of this illustrative example, the statistical conclusions of the five approaches were in agreement (i.e., the loading of the externalizing item and the intercept of the approaches to learning item were not invariant). Simulation work should be done to investigate in which situations the conclusions of these approaches diverge. / Dissertation/Thesis / Masters Thesis Psychology 2016

Page generated in 0.0933 seconds