• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 433
  • 158
  • 145
  • 53
  • 40
  • 19
  • 8
  • 8
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • Tagged with
  • 1017
  • 145
  • 101
  • 99
  • 96
  • 91
  • 91
  • 90
  • 76
  • 67
  • 66
  • 65
  • 64
  • 64
  • 61
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
211

Optomotor Response Reduced by Procaine Injection in the Central Complex of the cockroach, Blaberus discoidalis

Kesavan, Malavika 21 February 2014 (has links)
No description available.
212

Morphological Correlates of Locomotion in Anurans: Limb Length, Pelvic Anatomy and Contact Structures

Simons, Verne F. H. 07 August 2008 (has links)
No description available.
213

A computer simulation study of omnidirectional supervisory control for rough-terrain locomotion by a multilegged robot vehicle/

Lee, Wha-Joon January 1984 (has links)
No description available.
214

Kinematic optimal design of a six-legged walking machine /

Song, Shin-Min January 1984 (has links)
No description available.
215

Musculo-skeletal dynamics and multiprocessor control of a biped model in a turning maneuver /

Chen, Ben-Ren January 1985 (has links)
No description available.
216

Design of a Novel Tripedal Locomotion Robot and Simulation of a Dynamic Gait for a Single Step

Heaston, Jeremy Rex 02 October 2006 (has links)
Bipedal robotic locomotion based on passive dynamics is a field that has been extensively researched. By exploiting the natural dynamics of the system, these bipedal robots consume less energy and require minimal control to take a step. Yet the design of most of these bipedal machines is inherently unstable and difficult to control since there is a tendency for the machine to fall once it stops walking. This thesis presents the design and analysis of a novel three-legged walking robot for a single step. The STriDER (Self-excited Tripedal Dynamic Experimental Robot) incorporates aspects of passive dynamic walking into a stable tripedal platform. During a step, two legs act as stance legs while the other acts as a swing leg. A stance plane, formed by the hip and two ground contact points of the stance legs, acts as a single effective stance leg. When viewed in the sagittal plane, the machine can be modeled as a planar four link pendulum. To initiate a step, the legs are oriented to push the center of gravity outside of the stance legs. As the body of the robot falls forward, the swing leg naturally swings in between the two stance legs and catches the STriDER. Once all three legs are in contact with the ground, the robot regains its stability and the posture of the robot is then reset in preparation for the next step. To guide the design of the machine, a MATLAB simulation was written to allow for tuning of several design parameters, including the mass, mass distribution, and link lengths. Further development of the code also allowed for optimization of the design parameters to create an ideal gait for the robot. A self-excited method of actuation, which seeks to drive a stable system toward instability, was used to control the robot. This method of actuation was found to be robust across a wide range of design parameters and relatively insensitive to controller gains. / Master of Science
217

Effect of boundaries on swimming of Paramecium multimicronucleatum

Jana, Saikat 03 September 2013 (has links)
Microorganisms swimming in their natural habitat interact with debris and boundaries, which can modify their swimming characteristics. However, the boundary effect on swimming microorganisms have not been completely understood yet, and is one of most active areas of research. Amongst microorganisms, unicellular ciliates are the fastest swimmers and also respond to a variety of external cues. We choose Paramecium multimicronucleatum as a model system to understand the locomotion of ciliates. First, we explore the effects of boundaries on swimming modes of Paramecium multimicronu- cleatum by introducing them in 2D films and 1D channels. The geometric confinements cause the Paramecia to transition between: a directed, a meandering and a self-bending behaviors. During the self-bending mode the cell body exerts forces on the walls; which is quantified by using a beam bending analogy and measuring the elasticity of the cell body. The first inves- tigation reveals the complicated swimming patterns of Paramecium caused by boundaries. In the second study we investigate the directed swimming of Paramecium in cylindrical capillaries, which mimics the swimming of ciliates in the pores of soil. A finite-sized cell lo- comoting in extreme confinements creates a pressure gradient across its ends. By developing a modified envelop model incorporating the confinements and pressure gradient effects, we are able to predict the swimming speed of the organisms in confined channels. Finally we study how Paramecium can swim and feed efficiently by stirring the fluid around its body. We experimentally employ "-Particle Image Velocimetry to characterize flows around the freely swimming Parameicum and numerically use Boundary Element Method to quantify the effect of body shapes on the swimming and feeding process. Results show that the body shape of Paramecium (slender anterior and bulky posterior) is hydrodynamically optimized to swim as well as feed efficiently. The dissertation makes significant advances in both experimentally characterizing and the- oretically understanding the flow field and locomotion patterns of ciliates near solid bound- aries. / Ph. D.
218

Design and Control of a Humanoid Robot, SAFFiR

Lahr, Derek Frei 29 May 2014 (has links)
Emergency first responders are the great heroes of our day, having to routinely risk their lives for the safety of others. Developing robotic technologies to aid in such emergencies could greatly reduce the risk these individuals must take, even going so far as to eliminate the need to risk one life for another. In this role, humanoid robots are a strong candidate, being able to take advantage of both the human engineered environment in which it will likely operate, but also make use of human engineered tools and equipment as it deals with a disaster relief effort. The work presented here aims to lessen the hurdles that stand in the way through the research and development of new humanoid robot technologies. To be successful in the role of an emergency first responder requires a fantastic array of skills. One of the most fundamental is the ability to just get to the scene. Unfortunately, it is at this level that humanoid robots currently struggle. This research focuses on the complementary development of physical hardware, digital controllers, and trajectory planning necessary to achieve the research goals of improving the locomotion capabilities of a humanoid robot. To improve the physical performance capabilities of the robot, this research will first focus on the interaction between the hip and knee actuators. It is shown that much like the human body, a biped greatly benefits from the use of biarticular actuation. Improvements in efficiency as much as 30% are possible by simply interconnecting the hip roll and knee pitch joints. Balancing and walking controllers are designed to take advantage of the new hardware capabilities and expand the terrain capabilities of bipedal walking robots to uneven and non-stationary ground. A hybrid position/force control based balancing controller stabilizes the robot's COM regardless of the terrain underfoot. In particular two feedback mechanisms are shown to greatly improve the stability of bipedal systems in response to unmodelled dynamics. The hybrid position/force approach is shown through experiments to greatly extend humanoid capabilities to many types of terrain. With robust balancing ensured, walking trajectories are defined using an improved linear inverted pendulum model that incorporates the swing leg dynamics. The proposed method is shown to significantly reduce the control authority (by 50%) required for satisfactory trajectory following. Three parameters are identified which provide for quick manual or numerical solutions to be found to the trajectory problem. The walking and balance controller were operated on four different terrains successfully, strewn plywood, gravel, and high pile synthetic grass. Furthermore, SAFFiR is believed to be the first bipedal robot to ever walk on sand. The hardware enabled force control architecture was very effective at modulating ground reaction torques no matter the ground conditions. This in combination with highly accurate state estimation provided a very stable balance controller on top of which successful walking was demonstrated. / Ph. D.
219

Millipede-Inspired Locomotion for Rumen Monitoring through Remotely Operated Vehicle

Garcia, Anthony Jon Chanco 18 September 2018 (has links)
There has been a growing interest in development of nature-inspired miniature mobile robotics, for navigating complex ground scenarios, unknown terrains, and disaster-hit areas. One application is the development of a remotely operated vehicle (ROV) for rumen monitoring to improve our understanding of microbiology, and real-time physical changes and correlations with health. This interest is being driven from the desire to improve the safety and efficiency of food production by improving precision animal agriculture, which involves understanding the digestive system of ruminant animals and responding to the biochemical and physical changes. Most miniature robotic locomotion methods have taken inspiration from insects and have focused on adopting approaches that results in improved gait performance with respect to stability, velocity, cost-of-transport, and ability to navigate uneven surface terrains. In order to operate in the rumen environment, the locomotion mechanism should have the ability to handle large frictional and viscous forces in the direction of motion performing submerged burrowing-like action. The rumen environment consists of varying stiffness content with different fluidic concentration across the layers, reaching high viscosity and densities similar to wet soil or mud. Taking inspiration from millipedes for a locomotion mechanism to function in such an environment is attractive as these organisms have evolved to be proficient burrowers in similar substrates. In this dissertation, the bio-mechanics of millipedes were investigated in-depth and modeled using analytical approaches. Multiple experiments were conducted on real animals to gain fundamental understanding of their locomotive abilities under varying environmental conditions. From this understanding, their gait behavior was emulated on a robotic platform to confirm the predicted dynamics and practically demonstrate the phenomena of modulating thrust force. The robotic models were also utilized to validate the parametric analysis and gain insight of the burrowing ability in varying gait behavior and body morphology. The primary features that govern the millipede behavior for effective burrowing were analyzed and utilized to design a locomotion mechanism for a rumen ROV. The design of the locomotion mechanism was tested in rumen-like media consisting of a wet mud mixture, where both locomotion thrust and steering ability were demonstrated. / Ph. D. / In this dissertation, the movement of millipedes utilize to traverse effectively within an environment that provides significant resistance is studied. Through various experimental observations and mathematical modeling, we are able to develop an understanding of the techniques millipedes use to be effective burrowers. To validate our model and understanding the millipede movement techniques, a robot was designed to emulate a millipede’s body structure and movement behavior. The performance of the millipede robot was found to be consistent with that of the biological creatures, indicating that we are able to emulate their behavior to achieve desirable tasks. With this developed understanding of the fundamental concepts that allow millipedes to effectively move against large resistances, we introduce the ability to design robots or devices that can achieve similar performance for various applications ranging from search and rescue to health inspection. One such application is a device that traverse within the stomach (rumen) of dairy cows to investigate its biological features and characteristics for improvement in animal agricultural efficiency. The fundamental concepts of millipede motion are translated to a rumen monitoring vehicle design, which would operate in a wet-soil-like environment, similar to millipedes. The device motion techniques are demonstrated, an indication of successfully transferring the fundamental mechanism used by millipedes for an engineering application.
220

Whole Skin Locomotion Inspired by Amoeboid Motility Mechanisms: Mechanics of the Concentric Solid Tube Model

Ingram, Mark Edward 06 November 2006 (has links)
As the technology of robotics intelligence advances, and new application areas for mobile robots increase, the need for alternative fundamental locomotion mechanisms for robots that allow them to maneuver into complex unstructured terrain becomes critical. In this research we present a novel locomotion mechanism for mobile robots inspired by the motility mechanism of certain single celled organisms such as amoebae. Whole Skin Locomotion (WSL), as we call it, works by way of an elongated toroid which turns itself inside out in a single continuous motion, effectively generating the overall motion of the cytoplasmic streaming ectoplasmic tube in amoebae. This research presents the preliminary analytical study towards the design and development of the novel WSL mechanism. In this thesis we first investigate how amoebas move, then discuss how this motion can be replicated. By applying the biological theories of amoeboid motility mechanisms, different actuation models for WSL are developed including the Fluid Filled Toroid (FFT) and Concentric Solid Tube (CST) models. Then, a quasi-static force analysis is performed for the CST model and parametric studies for design, including power efficiency and force transition characteristics, are presented. / Master of Science

Page generated in 0.062 seconds