• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 1
  • Tagged with
  • 11
  • 11
  • 6
  • 6
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Optomotor Response Reduced by Procaine Injection in the Central Complex of the cockroach, Blaberus discoidalis

Kesavan, Malavika 21 February 2014 (has links)
No description available.
2

Sensory Processing and Anatomical Organization of the Central Complex in the Flesh Fly, Neobellieria Bullata

Phillips-Portillo, James January 2012 (has links)
Animals rely on information provided by their senses to perform the complicated series of motor actions that allow them to obtain food and shelter, locate mates, and avoid predators. Interpreting sensory information and using it to guide behavior is one of the principle roles of the nervous system. In the insect brain, a system of midline neuropils called the central complex is thought to be the site at which sensory information is integrated and converted into the signals that initiate or modify motor outputs. This dissertation addresses three important questions for understanding how the central complex processes sensory information and influences behavior. These questions are: 1. What kind of sensory information is represented in the central complex? 2. What is the relationship of central complex neuropils to other brain regions? 3. Are such regions simply relay stations, or do they support computations that contribute to phenomena cautiously ascribed to the central complex, such as visual learning and memory? Using the flesh fly, Neobellieria bullata, intracellular recordings and dye fills were conducted to explore the sensory parameters that are relayed to the central complex. The results of these experiments along with previously published observations suggest that the sensory information relayed to the central complex differs from species to species and is likely matched to the behavior of each. Reconstructions of neurons labeled during intracellular recordings, cobalt injections, Golgi impregnations, immunohistochemistry, and Bodian staining were used to further explore the relationship between the central complex and the superior protocerebrum. These studies suggest that the superior protocerebrum is a complicated computation center, more intricately related to the central complex than has been previously assumed. These results are used to propose a network model for how one circuit in the central complex may perform some of the functions the central complex has experimentally been shown to mediate. The differences between this model and the elaboration of the central complex in vivo suggest that circuits within the central complex also support a variety of other computations. Finally, future experiments are described, investigating the role of the central complex in orientation of migrating monarch butterflies.
3

Insect-Like Organization of the Stomatopod Central Complex: Functional and Phylogenetic Implications

Thoen, Hanne H., Marshall, Justin, Wolff, Gabriella H., Strausfeld, Nicholas J. 07 February 2017 (has links)
One approach to investigating functional attributes of the central complex is to relate its various elaborations to pancrustacean phylogeny, to taxon-specific behavioral repertoires and ecological settings. Here we review morphological similarities between the central complex of stomatopod crustaceans and the central complex of dicondylic insects. We discuss whether their central complexes possess comparable functional properties, despite the phyletic distance separating these taxa, with mantis shrimp (Stomatopoda) belonging to the basal branch of Eumalacostraca. Stomatopods possess the most elaborate visual receptor system in nature and display a fascinating behavioral repertoire, including refined appendicular dexterity such as independently moving eyestalks. They are also unparalleled in their ability to maneuver during both swimming and substrate locomotion. Like other pancrustaceans, stomatopods possess a set of midline neuropils, called the central complex, which in dicondylic insects have been shown to mediate the selection of motor actions for a range of behaviors. As in dicondylic insects, the stomatopod central complex comprises a modular protocerebral bridge (PB) supplying decussating axons to a scalloped fan-shaped body (FB) and its accompanying ellipsoid body (EB), which is linked to a set of paired noduli and other recognized satellite regions. We consider the functional implications of these attributes in the context of stomatopod behaviors, particularly of their eyestalks that can move independently or conjointly depending on the visual scene.
4

Drosophila Embryonic Type II Neuroblasts: Origin, Temporal Patterning and Contribution to the Adult Central Complex

Walsh, Kathleen 10 April 2018 (has links)
The large numbers of neurons that comprise the adult brain display an immense diversity. Repeated divisions of a relatively small pool of neural stem cells generate this neuronal diversity during development. To increase progress towards medical treatments for neurodegenerative diseases, it is of interest to understand both how neural stem cells generate the assortment of neurons and how these neurons come together to form a functional brain. Brain assembly occurs sequentially across time with early events laying the foundation for later events. Drosophila neural stem cells, neuroblasts (NBs), are an excellent model for investigating how neural diversity is generated and what roles early and late born neurons have in shaping the stereotypical adult brain structure. Generation of neural diversity, begins with specifying the diverse population of stem cells, called spatial patterning, and continues with diversifying neurons made from the diverse stem cells, called temporal patterning. Drosophila NBs exhibit both spatial and temporal patterning. Drosophila NBs have three types of division modes: type 0, type I and type II. Type II NBs expand the number of neurons made with progeny that exhibit a transit-amplifying division pattern, similar to that of mammalian outer subventricular zone (OSVZ) progenitors. Additionally, type II NBs exhibit temporal patterning across both the NB and their progeny to generate a large diversity of neurons that populate a conserved region of the brain responsible for many sensory and motor functions, called the central complex. Type II NBs have only been identified and studied during later stages in development, with nothing known about their origin or early divisions. In this dissertation, I describe the early lineages of the type II NBs within the Drosophila embryo. I show that type II NBs and lineages originate early in development, exhibit temporal patterning across both the NB and transit-amplifying progeny, and produce neurons that survive into the adult brain to innervate and potentially serve as a foundation within the adult central complex. Additionally, I explain how live imaging of the developing Drosophila brain can answer questions not easily addressed through other methods.
5

Distribution and modulatory roles of neuropeptides and neurotransmitters in the Drosophila brain

Kahsai Tesfai, Lily January 2010 (has links)
The central complex is a prominent neuropil found in the middle of the insect brain. It is considered as a higher center for motor control and information processing. Multiple neuropeptides and neurotransmitters are produced in neurons of the central complex, however, distribution patterns and functional roles of signaling substances in this brain region are poorly known. Thus, this thesis focuses on the distribution of signaling substances and on modulatory roles of neuropeptides in the central complex of Drosophila. Immunocytochemistry in combination with GAL4/UAS technique was used to visualize various signaling substances in the central complex. We revealed different central-complex neurons expressing the neuropeptides; Drosophila tachykinin (DTK), short neuropeptide F (sNPF), myoinhibitory peptide (MIP), allatostatin A, proctolin, SIFamide, neuropeptide F and FMRFamide. Subpopulations of DTK, sNPF and MIP-expressing neurons were found to co-localize a marker for acetylcholine. In addition, five metabotropic neurotransmitter receptors were found to be expressed in distinct patterns. Comparison of receptor/ligand distributions revealed a close match in most of the structures studied. By using a video-tracking assay, peptidergic modulation of locomotor behavior was studied. Different DTK and sNPF-expressing neurons innervating the central complex were revealed to modulate spatial distribution, number of activity-rest phases and activity levels, suggesting circuit dependent modulation. Furthermore, neurosecretory cells in the Drosophila brain that co-express three types of neuropeptides were shown to modulate stress responses to desiccation and starvation. In summary, we have studied two different neuropeptides (DTK and sNPF) expressed in interneuronal circuits and neurosecretory cells of the Drosophila brain in more detail. We found that these neuropeptides display multiple actions as neuromodulators and circulating hormones, and that their actions depend on where they are released. / At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 2: In press. Paper 3: Manuscript.
6

Mechanisms of place recognition and path integration based on the insect visual system

Stone, Thomas Jonathan January 2017 (has links)
Animals are often able to solve complex navigational tasks in very challenging terrain, despite using low resolution sensors and minimal computational power, providing inspiration for robots. In particular, many species of insect are known to solve complex navigation problems, often combining an array of different behaviours (Wehner et al., 1996; Collett, 1996). Their nervous system is also comparatively simple, relative to that of mammals and other vertebrates. In the first part of this thesis, the visual input of a navigating desert ant, Cataglyphis velox, was mimicked by capturing images in ultraviolet (UV) at similar wavelengths to the ant’s compound eye. The natural segmentation of ground and sky lead to the hypothesis that skyline contours could be used by ants as features for navigation. As proof of concept, sky-segmented binary images were used as input for an established localisation algorithm SeqSLAM (Milford and Wyeth, 2012), validating the plausibility of this claim (Stone et al., 2014). A follow-up investigation sought to determine whether using the sky as a feature would help overcome image matching problems that the ant often faced, such as variance in tilt and yaw rotation. A robotic localisation study showed that using spherical harmonics (SH), a representation in the frequency domain, combined with extracted sky can greatly help robots localise on uneven terrain. Results showed improved performance to state of the art point feature localisation methods on fast bumpy tracks (Stone et al., 2016a). In the second part, an approach to understand how insects perform a navigational task called path integration was attempted by modelling part of the brain of the sweat bee Megalopta genalis. A recent discovery that two populations of cells act as a celestial compass and visual odometer, respectively, led to the hypothesis that circuitry at their point of convergence in the central complex (CX) could give rise to path integration. A firing rate-based model was developed with connectivity derived from the overlap of observed neural arborisations of individual cells and successfully used to build up a home vector and steer an agent back to the nest (Stone et al., 2016b). This approach has the appeal that neural circuitry is highly conserved across insects, so findings here could have wide implications for insect navigation in general. The developed model is the first functioning path integrator that is based on individual cellular connections.
7

Evolution of central complex development: Cellular and genetic mechanisms

Farnworth, Max Stephen 30 September 2019 (has links)
No description available.
8

Negotiation of Barriers by Intact and Brain-Lesioned Cockroaches

Harley, Cynthia Marie 10 December 2009 (has links)
No description available.
9

Functional organisation of the central complex of the grasshopper <i>Chorthippus biguttulus</i> in relation to sound production / Funktionelle Organisation des Zentralkomplexes des Grashüpfers <i>Chorthippus biguttulus</i> in Bezug auf die Gesangsproduktion

Kunst, Michael 28 April 2008 (has links)
No description available.
10

The Neural Basis of Head Direction and Spatial Context in the Insect Central Complex

Varga, Adrienn Gabriella 05 June 2017 (has links)
No description available.

Page generated in 0.0798 seconds