• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 357
  • 59
  • 57
  • 57
  • 8
  • 8
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • Tagged with
  • 638
  • 113
  • 100
  • 97
  • 86
  • 75
  • 65
  • 61
  • 60
  • 58
  • 55
  • 51
  • 50
  • 47
  • 46
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
201

Synthesis, Dynamics and Photophysics of Nanoscale Systems

Mirkovic, Tihana 25 September 2009 (has links)
The emerging field of nanotechnology, which spans diverse areas such as nanoelectronics, medicine, chemical and pharmaceutical industries, biotechnology and computation, focuses on the development of devices whose improved performance is based on the utilization of self-assembled nanoscale components exhibiting unique properties owing to their miniaturized dimensions. The first phase in the conception of such multifunctional devices based on integrated technologies requires the study of basic principles behind the functional mechanism of nanoscale components, which could originate from individual nanoobjects or result as a collective behaviour of miniaturized unit structures. The comprehensive studies presented in this thesis encompass the mechanical, dynamical and photophysical aspects of three nanoscale systems. A newly developed europium sulfide nanocrystalline material is introduced. Advances in synthetic methods allowed for shape control of surface-functionalized EuS nanocrystals and the fabrication of multifunctional EuS-CdSe hybrid particles, whose unique structural and optical properties hold promise as useful attributes of integrated materials in developing technologies. A comprehensive study based on a new class of multifunctional nanomaterials, derived from the basic unit of barcoded metal nanorods is presented. Their chemical composition affords them the ability to undergo autonomous motion in the presence of a suitable fuel. The nature of their chemically powered self-propulsion locomotion was investigated, and plausible mechanisms for various motility modes were presented. Furthermore functionalization of striped metallic nanorods has been realized through the incorporation of chemically controlled flexible hinges displaying bendable properties. The structural aspect of the light harvesting machinery of a photosynthetic cryptophyte alga, Rhodomonas CS24, and the mobility of the antenna protein, PE545, in vivo were investigated. Information obtained through a combination of steady-state and time-resolved spectroscopy in conjunction with quantum chemical calculations aided in the elucidation of the dynamics and the mechanism of light harvesting in the multichromophoric phycobiliprotein phycocyanin PC645 in vitro. Investigation of the light-harvesting efficiency and optimization of energy transfer with respect to the structural organization of light-harvesting chromophores on the nanoscale, can provide us with fundamental information necessary for the development of synthetic light-harvesting devices capable of mimicking the efficiency of the natural system.
202

Building on the hot-injection architecture : giving worth to alternative nanocrystal syntheses /

Archer, Paul I., January 2007 (has links)
Thesis (Ph. D.)--University of Washington, 2007. / Vita. Includes bibliographical references (leaves 162-172).
203

Effects of compositions and mechanical milling modes on hydrogen storage properties

Huang, Zhenguo. January 2007 (has links)
Thesis (Ph.D.)--University of Wollongong, 2007. / Typescript. Includes bibliographical references: leaf 165-177.
204

Nucleation and equilibration via surface diffusion : an experimental study : a thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Physics in the University of Canterbury /

McCarthy, David N. January 2008 (has links)
Thesis (Ph. D.)--University of Canterbury, 2008. / Typescript (photocopy). Includes bibliographical references (p. 158-165). Also available via the World Wide Web.
205

Positron studies of silicon and germanium nanocrystals embedded in silicon dioxide

Deng, Xin, January 2009 (has links)
Thesis (M. Phil.)--University of Hong Kong, 2009. / Includes bibliographical references (leaves 91-92) Also available in print.
206

Processing, structure, and tribological property interrelationships in sputtered nanocrystalline ZnO coatings

Tu, Wei-Lun. Scharf, Thomas W., January 2009 (has links)
Thesis (M.S.)--University of North Texas, Aug., 2009. / Title from title page display. Includes bibliographical references.
207

Applying zeolites as low dielectric constant (low-k) materials

Sun, Minwei, January 2009 (has links)
Thesis (Ph. D.)--University of California, Riverside, 2009. / Includes abstract. Includes bibliographical references. Issued in print and online. Available via ProQuest Digital Dissertations.
208

Engineered E. coli and its application in bioremediation and nanotechnology

Kang, Seung Hyun, January 2009 (has links)
Thesis (Ph. D.)--University of California, Riverside, 2009. / Includes abstract. Includes bibliographical references. Issued in print and online. Available via ProQuest Digital Dissertations.
209

Fatigue modeling of nano-structured chip-to-package interconnections

Koh, Sau W. January 2009 (has links)
Thesis (M. S.)--Materials Science and Engineering, Georgia Institute of Technology, 2009. / Committee Chair: Rao R. Tummala; Committee Co-Chair: Ashok Saxena; Committee Member: Karl Jacob; Committee Member: Suresh Sitaraman; Committee Member: Thomas H. Sanders, Jr.
210

Nanocrystalline titanium dioxide solar cells sensitized with germanium quantum dots

Miao, Yinghong. January 2008 (has links)
Thesis (M.M.S.E.)--University of Delaware, 2008. / Principal faculty advisor: S. Ismat Shah, Dept. of Materials Science. Includes bibliographical references.

Page generated in 0.3702 seconds