181 |
Nanocristais de rifampicina: preparação e caracterização físico-química / Nanocrystals: preparation and physical-chemical characterization.Melo, Katherine Jasmine Curo 22 July 2016 (has links)
A tuberculose (TB) ainda se apresenta como desafio para a Saúde Pública, a nível global. Essa doença negligenciada (DN) tem como tratamento de primeira escolha a rifampicina. Esse fármaco pertence à classe II, segundo o Sistema de Classificação Biofarmacêutica (SCB), apresentando baixa solubilidade em água. Tal característica constitui desafio no desenvolvimento de formas farmacêuticas eficazes e seguras. O uso de nanotecnologia tem se destacado como alternativa promissora para melhorar a solubilidade aquosa de fármacos. Nesse sentido, o presente trabalho teve como objetivo a preparação e a caracterização físico-química de nanocristais de rifampicina. A preparação dos nanocristais foi realizada empregando método de moagem de alta energia, homogeneização a alta pressão e moagem via úmida em escala reduzida. Os resultados referentes ao método de moagem de alta energia (MAE) demostraram formação de nanocristais, mas em quantidade reduzida seguida da formação de agregados (F1-M, F2-M e F3-M). A homogeneização a alta pressão (HAP) permitiu a formação de nanocristais (F1-H e F2-H). A formulação F1-H contendo o poloxâmero 188 não apresentou estabilidade após 24 horas da preparação. A F2-H obteve diâmetro hidrodinâmico médio (DHM) de 412,60 ± 4,12 nm, índice de polidispersividade igual a 0,12 ± 0,02 e potencial zeta igual a -9,94 ± 0,19 mV. A elevada concentração requerida do agente estabilizante para essa formulação foi fator limitante para o seu desenvolvimento. A moagem via úmida em escala reduzida permitiu a formação de nanocristais de rifampicina F1-MU e F2-MU, com DHM igual a 340,20 ± 5,44 nm e 364,2 ± 4,50 nm, respectivamente, e distribuição de tamanho uniforme. A avaliação do DHM, do IP e do PZ, por período de três meses, revelou a estabilidade dessas formulações. Essas formulações foram obtidas por meio de planejamento de experimentos por superfície de resposta tendo como variáreis a concentração de rifampicina, a concentração do agente estabilizante e a quantidade de esferas de zircônia. As medidas de distribuição de tamanho médio das partículas e a morfologia foram realizadas utilizando difração a laser (LD) e microscopia eletrônica de transmissão (MET), respectivamente. Adicionalmente, as avaliações empregando calorimetria exploratória diferencial (DSC) e difração de raio X (DRX) revelaram que não houve mudança na estrutura cristalina do polimorfo II de rifampicina e nem interação entre o fármaco e os excipientes. O presente trabalho permitiu a obtenção de de nanocristais de rifampicina estáveis e com solubilidade maior de até 1,92 vezes (F1-MU) e 1,66 vezes (F2-MU), em água, quando comparada à rifampicina matéria-prima. Os perfis de dissolução das formulações F1-MU e F2-MU demonstraram dissolução de 95% de rifampicina em aproximadamente 5 minutos. Esse resultado é significativamente superior àquele observado para o produto FURP-rifampicina suspensão oral 20 mg/mL que apresentou dissolução de 23,2% nesse mesmo intervalo de tempo. A avaliação da atividade antimicrobiana das nanosuspensões foi confirmada frente à rifampicina padrão por meio da determinação da sua concentração mínima inibitória. / Tuberculosis (TB) still presents a challenge for public health globally. This Neglected Tropical Disease (NTDs) has as the treatment of choice rifampicin. This drug belongs to the class II, according to Biopharmaceutics Classification System (BCS), with low water solubility. This characteristic is a challenge in the development of safe and effective dosage forms. The nanotechnology has emerged as a promising alternative to improve the aqueous solubility of drugs. Accordingly, the present work aimed to the preparation and physicochemical characterization of nanocrystals of rifampicin. The preparation of the nanocrystals was performed using high-energy ball milling method, high-pressure homogenization and wet grinding process on a small scale. The results of the high-energy ball milling method demonstrated formation of nanocrystals, but in small amounts followed by the formation of aggregates (F1-M, F2-M and F3-M). The high pressure homogenization (HPH) allowed the formation of nanocrystals (F1-H and F2-H). F1-M formulation containing Poloxamer 188 did not show stability after 24 hours preparation. F2-H obtained mean hydrodynamic diameter (DHM) of 412.60 ± 4.12 nm, polydispersity index of 0.12 ± 0.02 and zeta potential of -9.94 ± 0.19 mV. The high concentration of stabilizing agent required for this formulation was a limiting factor for the development. The wet grinding process on a small scale allowed the formation of rifampicin nanocrystal F1-MU and F2-MU with DHM of 340,20 ± 5,44 nm e 364,2 ± 4,50, respectively, and size distribution uniform. The evaluation of DHM, IP and PZ, for three months, showed stability of these formulations. These formulations were obtained by design of experiments using response surface having as variables the concentration of rifampicin, the concentration of the stabilizing agent and the amount of zirconia beads. The mean size distribution measurements of particles and morphology were performed using laser diffraction (LD) and transmission electron microscopy (TEM), respectively. Additionally, the evaluations using differential scanning calorimetry (DSC) and X-ray diffraction (XRD) revealed that there was no change in the crystalline structure of polymorph II of rifampicin and no interaction between the drug and excipients. This study allowed obtaining stable rifampicin nanocrystals and greater solubility of up to 1.92 times (F1-MU) and 1.66 times (F2-MU) in water compared to rifampicin feedstock. The dissolution profiles of F1-MU and F2-MU formulations showed 95% dissolution of rifampicin in approximately 5 minutes. This result is significantly higher than that observed for the rifampicin-FURP oral suspension product 20 mg / ml that had Dissolving 23.2% over the same time interval. The evaluation of the antimicrobial activity of nanosuspensions was confirmed against the standard rifampicin by determining its minimum inhibitory concentration.
|
182 |
The Synthesis and Surface Chemistry of Colloidal Quantum DotsCampos, Michael Paul January 2017 (has links)
Colloidal semiconductor nanocrystals, also known as quantum dots, are an extraordinary class of material, combining many of the most attractive properties of semiconductors with the practicality of solution chemistry. As such, they lie at a unique interface between inorganic chemistry, organic chemistry, solid-state physics, and colloidal chemistry. The rapid advance in knowledge of quantum dots over the past 30 years has largely been driven by interest in their fundamental physical properties and their broad applicability to challenges in nanoscience. However, much less attention has been paid to the chemistry underlying these features. In this dissertation, we discuss the state of nanocrystal chemistry and new insights we have unlocked by taking a bottom-up, chemistry-based approach to nanocrystal synthesis. We will cover these in a case-by-case fashion in the context of four chapters.
Chapter 1 covers our CdTe nanocrystal synthesis surface chemistry studies with an eye toward CdTe photovoltaic technology, in which the role of CdTe surfaces is poorly understood. CdTe nanocrystals are traditionally a difficult material to synthesize, particularly with well-defined surface chemistry. In order to enable quantitative surface studies, we looked upstream and re-evaluated CdTe synthesis from the ground up. We identified a CdTe precursor largely overlooked since 1990, cadmium bis(phenyltellurolate) (Cd(TePh)2), and harnessed its excellent reactivity toward a synthesis of CdTe nanocrystals solely bound by cadmium carboxylate (Cd(O2CR)2) ligands. We then use this well-defined material to show that Cd(O2CR)2 ligands bind less tightly to CdTe nanocrystals than CdSe nanocrystals. This finding holds promise for the development of photovoltaics from colloidal CdTe feedstocks.
Chapter 2 covers a tunable library of substituted thiourea precursors to metal sulfide nanocrystals. Controlling the size of nanocrystals produced in a given reaction is paramount to their use in opto-electronic devices, but the most widely used technique to control size is prematurely arresting crystal growth. We introduce a library of thiourea precursors whose organic substituents tune the rate of precursor conversion, which dictates the number of nanocrystals formed and the final nanocrystal size following complete precursor conversion. We use PbS as a model system to 1) demonstrate the concept of kinetically controlled nanocrystal size, 2) quantify substituent trends, and 3) optimize multigram scale syntheses. We then expand the thiourea methodology to a broad range of materials and nanocrystal morphologies. This work represents a paradigm shift that will greatly accelerate the pace of progress in nanocrystal science as it transitions from academia to a multibillion-dollar industry.
Chapter 3 covers an analogously tunable library of substituted selenourea precursors, but focuses on the synthesis of PbSe nanocrystals. PbSe nanocrystal synthesis is notoriously low-yielding and poorly tunable, but the remarkable properties of PbSe nanocrystals in photovoltaics and electrical transport have driven interest in the material for decades. We develop a library of N,N,N’-trisubstituted selenourea precursors and leverage their fine conversion rate tunability to synthesize PbSe nanocrystals of many sizes in quantitative yields. Interestingly, the nanocrystals produced in this reaction are demonstrably less polydisperse than literature samples, exhibiting absorption linewidths approaching the single-particle limit. We quantify this narrowness using a transient absorption spectroscopy technique called spectral hole burning.
Chapter 4 covers our efforts to dig deeper into nanocrystal nucleation and growth and use that new knowledge to develop luminescent downconverters ready for on-chip integration into LED lighting. By studying early time points in PbS and PbSe nanocrystal synthesis, we estimate solute concentrations, nucleation thresholds, and nanocrystal growth rates. In particular, we find that metal selenides and sulfides have very different nucleation and growth behavior, as well as that PbS nucleation is a surprisingly slow process. The lessons learned from these fundamental experiments have enabled us to rapidly develop red-emitting CdS/CdSe/CdS “spherical quantum well” emitters whose photoluminescence quantum yields are 90 – 95%.
|
183 |
Formation et polymérisation d’émulsions de Pickering stabilisées par des nanocristaux de cellulose modifiés / Formation and stabilization of Pickering emulsions stabilized by modified cellulose nanocrystalsWerner, Arthur 18 December 2018 (has links)
Les travaux de cette thèse portent sur la formation et la polymérisation d'émulsions de Pickering stabilisées par des nanocristaux de cellulose (NCC). Tout d’abord, les NCC sont fonctionnalisés en surface de façon à modifier d'une part, leur balance hydrophile/hydrophobe et d'autre part, apporter des fonctions promoteurs de la polymérisation par ATRP de la phase interne ou externe. A l'aide de ces NCC, des émulsions directes, inverses et doubles de styrène et de monomères acryliques ont été stabilisées puis polymérisées. L'impact, de la fonctionnalisation des NCC, de la nature du monomère et de l’amorceur, de la présence ou pas de sel sur, la taille, la stabilité, la couverture des gouttes et la morphologie des objets obtenus, a été étudiée. Les latex issus de la polymérisation radicalaire d’émulsions directes de Pickering ont permis la préparation de composites aux propriétés mécaniques améliorées par rapport à celles de la matrice sans charge. Les émulsions stabilisées par des NCC réactifs ont conduit à la synthèse de capsules ou de billes pleines en fonctions de la nature du monomère polymérisé. Des matériaux poreux ont été obtenus par polymérisation des émulsions inverses de Pickering. Enfin, la polymérisation des émulsions doubles a permis l’obtention d’objets à morphologie tout à fait inédite avec l’encapsulation de capsules de polystyrène dans des capsules plus volumineuses de ce même polymère. / Pickering emulsions are based on amphiphilic particle stabilizers, which adsorb irreversibly at the liquid-liquid interface and form a rigid structure around the droplets. Amongst these particles, biosourced and biorenewable cellulose nanocrystals (CNCs) have demonstrated good performances as Pickering stabilizers for oil in water emulsions. In this thesis, a wide range of emulsions of monomers were stabilized by amphiphilic modified CNCs. These Pickering emulsions subsequently serve as vessel to perform radical polymerization. In a first step, the CNCs are modified to tailor the hydrophobic/hydrophilic balance and are used to efficiently stabilize direct (O/W), inverted (W/O) or double W/O/W Pickering emulsions of monomers. The different emulsions obtained were subsequently polymerized, by thermal radical polymerization or by SI-ATRP. The polymerization of the direct emulsions allowed producing either capsules or filled beads, depending on the monomer used, which we assigned to differences in monomer reactivity. Hence, the method offers the opportunity to tune the morphology of the polymerized spheres (empty or filled), by simply controlling the monomer conversion. The polymerization of the inverted emulsion on the other end, led to the formation of a porous material. The polymerization of the double W/O/W emulsions was also envisaged, leading original morphology such as small empty beads encapsulated into larger capsules.
|
184 |
Nanocristais de rifampicina: preparação e caracterização físico-química / Nanocrystals: preparation and physical-chemical characterization.Katherine Jasmine Curo Melo 22 July 2016 (has links)
A tuberculose (TB) ainda se apresenta como desafio para a Saúde Pública, a nível global. Essa doença negligenciada (DN) tem como tratamento de primeira escolha a rifampicina. Esse fármaco pertence à classe II, segundo o Sistema de Classificação Biofarmacêutica (SCB), apresentando baixa solubilidade em água. Tal característica constitui desafio no desenvolvimento de formas farmacêuticas eficazes e seguras. O uso de nanotecnologia tem se destacado como alternativa promissora para melhorar a solubilidade aquosa de fármacos. Nesse sentido, o presente trabalho teve como objetivo a preparação e a caracterização físico-química de nanocristais de rifampicina. A preparação dos nanocristais foi realizada empregando método de moagem de alta energia, homogeneização a alta pressão e moagem via úmida em escala reduzida. Os resultados referentes ao método de moagem de alta energia (MAE) demostraram formação de nanocristais, mas em quantidade reduzida seguida da formação de agregados (F1-M, F2-M e F3-M). A homogeneização a alta pressão (HAP) permitiu a formação de nanocristais (F1-H e F2-H). A formulação F1-H contendo o poloxâmero 188 não apresentou estabilidade após 24 horas da preparação. A F2-H obteve diâmetro hidrodinâmico médio (DHM) de 412,60 ± 4,12 nm, índice de polidispersividade igual a 0,12 ± 0,02 e potencial zeta igual a -9,94 ± 0,19 mV. A elevada concentração requerida do agente estabilizante para essa formulação foi fator limitante para o seu desenvolvimento. A moagem via úmida em escala reduzida permitiu a formação de nanocristais de rifampicina F1-MU e F2-MU, com DHM igual a 340,20 ± 5,44 nm e 364,2 ± 4,50 nm, respectivamente, e distribuição de tamanho uniforme. A avaliação do DHM, do IP e do PZ, por período de três meses, revelou a estabilidade dessas formulações. Essas formulações foram obtidas por meio de planejamento de experimentos por superfície de resposta tendo como variáreis a concentração de rifampicina, a concentração do agente estabilizante e a quantidade de esferas de zircônia. As medidas de distribuição de tamanho médio das partículas e a morfologia foram realizadas utilizando difração a laser (LD) e microscopia eletrônica de transmissão (MET), respectivamente. Adicionalmente, as avaliações empregando calorimetria exploratória diferencial (DSC) e difração de raio X (DRX) revelaram que não houve mudança na estrutura cristalina do polimorfo II de rifampicina e nem interação entre o fármaco e os excipientes. O presente trabalho permitiu a obtenção de de nanocristais de rifampicina estáveis e com solubilidade maior de até 1,92 vezes (F1-MU) e 1,66 vezes (F2-MU), em água, quando comparada à rifampicina matéria-prima. Os perfis de dissolução das formulações F1-MU e F2-MU demonstraram dissolução de 95% de rifampicina em aproximadamente 5 minutos. Esse resultado é significativamente superior àquele observado para o produto FURP-rifampicina suspensão oral 20 mg/mL que apresentou dissolução de 23,2% nesse mesmo intervalo de tempo. A avaliação da atividade antimicrobiana das nanosuspensões foi confirmada frente à rifampicina padrão por meio da determinação da sua concentração mínima inibitória. / Tuberculosis (TB) still presents a challenge for public health globally. This Neglected Tropical Disease (NTDs) has as the treatment of choice rifampicin. This drug belongs to the class II, according to Biopharmaceutics Classification System (BCS), with low water solubility. This characteristic is a challenge in the development of safe and effective dosage forms. The nanotechnology has emerged as a promising alternative to improve the aqueous solubility of drugs. Accordingly, the present work aimed to the preparation and physicochemical characterization of nanocrystals of rifampicin. The preparation of the nanocrystals was performed using high-energy ball milling method, high-pressure homogenization and wet grinding process on a small scale. The results of the high-energy ball milling method demonstrated formation of nanocrystals, but in small amounts followed by the formation of aggregates (F1-M, F2-M and F3-M). The high pressure homogenization (HPH) allowed the formation of nanocrystals (F1-H and F2-H). F1-M formulation containing Poloxamer 188 did not show stability after 24 hours preparation. F2-H obtained mean hydrodynamic diameter (DHM) of 412.60 ± 4.12 nm, polydispersity index of 0.12 ± 0.02 and zeta potential of -9.94 ± 0.19 mV. The high concentration of stabilizing agent required for this formulation was a limiting factor for the development. The wet grinding process on a small scale allowed the formation of rifampicin nanocrystal F1-MU and F2-MU with DHM of 340,20 ± 5,44 nm e 364,2 ± 4,50, respectively, and size distribution uniform. The evaluation of DHM, IP and PZ, for three months, showed stability of these formulations. These formulations were obtained by design of experiments using response surface having as variables the concentration of rifampicin, the concentration of the stabilizing agent and the amount of zirconia beads. The mean size distribution measurements of particles and morphology were performed using laser diffraction (LD) and transmission electron microscopy (TEM), respectively. Additionally, the evaluations using differential scanning calorimetry (DSC) and X-ray diffraction (XRD) revealed that there was no change in the crystalline structure of polymorph II of rifampicin and no interaction between the drug and excipients. This study allowed obtaining stable rifampicin nanocrystals and greater solubility of up to 1.92 times (F1-MU) and 1.66 times (F2-MU) in water compared to rifampicin feedstock. The dissolution profiles of F1-MU and F2-MU formulations showed 95% dissolution of rifampicin in approximately 5 minutes. This result is significantly higher than that observed for the rifampicin-FURP oral suspension product 20 mg / ml that had Dissolving 23.2% over the same time interval. The evaluation of the antimicrobial activity of nanosuspensions was confirmed against the standard rifampicin by determining its minimum inhibitory concentration.
|
185 |
Nanocristais de ácido orótico: preparação e caracterização físico-química / Orotic acid nanocrystals: preparation and physical-chemical characterizationCompri, Jéssica de Cássia Zaghi 04 March 2016 (has links)
A malária é uma doença infecciosa aguda ou crônica causada por parasitas do gênero Plasmodium. Estima-se a ocorrência de 110 milhões de novos casos ao ano e cerca de um a dois milhões de óbitos em todo o mundo como decorrência da infecção. O ácido orótico ou vitamina B13 possui baixa solubilidade em praticamente todos os solventes, tal característica limita seu uso em preparações farmacêuticas. Quanto ao seu mecanismo de ação, o composto demonstrou atividade na inibição da diidroorotase e da diidroorotato desidrogenase, enzimas utilizadas no ciclo de replicação da malária, e também em outras enzimas da síntese das pirimidinas. Considerando seu potencial na terapêutica antimalárica, a baixa solubilidade do ácido orótico constitui limitação para o desenvolvimento de medicamento. Devido a sua simplicidade e vantagem em relação às outras estratégias existentes, a obtenção de nanocristais têm revelado elevado potencial para solucionar problemas associados à baixa velocidade de dissolução de fármacos, em especial aqueles com baixa solubilidade. O objetivo do presente trabalho foi a obtenção de nanocristais de ácido orótico empregando moagem à alta energia, bem como sua caracterização físico-química. Foram obtidos nanocristais de ácido orótico com redução de até 350 vezes no tamanho de partícula em relação a matéria-prima utilizada. Os ensaios para a caracterização físico-química evidenciaram comportamentos térmico e estrutural diferenciado do ácido orótico nanonizado. A solubilidade de saturação dos nanocristais de ácido orótico foi aumentada em até 13 vezes. A utilização do Povacoat® na produção dos nanocristais permitiu a obtenção de formulações mais estáveis, com melhor aspecto e com características físico químicas desejáveis à uma formulação contendo nanocristais. Adicionalmente, as formulações preparadas com o Povacoat® contendo até 13% de ácido orótico apresentaram toxicidade suave. Desse modo, os nanocristais de ácido orótico demonstram potencial como fármaco inovador para o tratamento da malária. / Malaria is an acute or chronic infection caused by parasites of the genus Plasmodium. It is estimated to occur than 110 million new cases per year and about one to two million deaths worldwide as a consequence of infection. The vitamin B13 or orotic acid has low solubility in almost all solvents, this characteristic limits their use in pharmaceutical preparations. Regarding its mechanism of action, the compound has demonstrated activity in inhibiting dihydroorotate dehydrogenase and diidroorotase, enzymes used in the replication cycle of malaria, and also other enzymes of the synthesis of pyrimidines. Considering their potential in antimalarial therapy, the low solubility of orotic acid constitutes a limitation for the development of medicine. Due to its simplicity and advantage over other existing approaches, obtaining nanocrystals have revealed high potential to solve problems associated with low dissolution rate of drugs, especially those with low solubility. The objective of this study was to obtain orotic acid nanocrystals using the high energy ball milling as well its physical chemical characterization. There were obtained nanocrystals orotic acid with reduction of 350 times in particle size in relation to the original material used. The tests for the physicochemical characterization showed thermal behavior and different structural nanonizado orotic acid. The saturation solubility of the nanocrystals orotic acid was increased to 13 times. The use of Povacoat® in the production of nanocrystals allowed obtaining more stable compositions with improved appearance and desirable physicochemical characteristics to a formulation containing nanocrystals. Additionally, the formulations prepared with the Povacoat® containing up to 13% of orotic acid showed mild toxicity. Thus, orotic acid nanocrystals demonstrate potential as a novel drug for the treatment of malaria.
|
186 |
Development of an impinger method for sampling airborne nanocelluloseGettz, Kevin Paul 01 May 2018 (has links)
An impinger-based sampling method was designed and evaluated for the collection of airborne cellulose nanocrystals (CNC). Plastic impingers were purchased and a custom nozzle was designed and 3D printed. Collection efficiency by particle size was compared to commercially available impingers. Collection efficiency (CE) was then adjusted theoretically for an impactor that would be used in a field setting to remove particles larger than 300 nm. Adjusted CE was compared to the nanoparticulate matter (NPM) criterion model, which mimics nanoparticle deposition in the human respiratory system. The impinger method was then used to collect rhodamine-tagged CNC to determine if it could collect a concentration of CNC that agreed with the known aerosolized concentration when analyzed with spectroscopy/spectrophotometry. The plastic impinger method had a greater collection efficiency for relevant particle sizes than the commercially available impingers tested. After adjusting for the impactor, the impinger method agreed with the NPM curve for particles ranging from 45-600 nm (R2=0.94). Concentrations of rhodamine-tagged CNC collected with the impinger method did not agree with the concentrations measured by the reference instrument, however this was likely due to issues with the batch of CNC used. The impinger method can be used to collect other nanoparticles, but analysis methods that do not rely on using tagged CNC must be developed to mate the preferred analysis method with sampling.
|
187 |
Synthesis of Germanium Nanocrystals and its Possible Application in Memory DevicesTeo, L.W., Heng, C.L., Ho, V., Tay, M.S., Choi, Wee Kiong, Chim, Wai Kin, Antoniadis, Dimitri A., Fitzgerald, Eugene A. 01 1900 (has links)
A novel method of synthesizing and controlling the size of germanium nanocrystals was developed. A tri-layer structure comprising of a thin (~5nm) SiO₂ layer grown using rapid thermal oxidation (RTO), followed by a layer of Ge+SiO₂ of varying thickness (6 - 20 nm) deposited using the radio frequency (r.f.) co-sputtering technique and a SiO₂ cap layer (50nm) deposited using r.f. sputtering, was investigated. It was verified using TEM that germanium nanocrystals of sizes ranging from 6 – 20 nm were successfully fabricated after thermal annealing of the tri-layer structure under suitable conditions. The nanocrystals were found to be well confined by the RTO SiO₂ and the cap SiO₂ under specific annealing conditions. The electrical properties of the tri-layer structure have been characterized using MOS capacitor test devices. A significant hysteresis can be observed from the C-V measurements and this suggests the charge storage capability of the nanocrystals. The proposed technique has the potential for fabricating memory devices with controllable nanocrystals sizes. / Singapore-MIT Alliance (SMA)
|
188 |
Nitrogen incorporation in nanocrystalline diamond thin films /Ma, Kwok Leung. January 2006 (has links) (PDF)
Thesis (M.Phil.)--City University of Hong Kong, 2006. / "Submitted to Department of Physics and Materials Science in partial fulfillment of the requirements for the degree of Master of Philosophy" Includes bibliographical references.
|
189 |
Growth and Characterization of ZnO NanocrystalsEricsson, Leif KE January 2013 (has links)
The understanding of surfaces of materials is of crucial importance to all of us. Considering nanocrystals (NCs), that have a large surface to bulk ratio, the surfaces become even more important. Therefore, it is important to understand the fundamental surface properties in order to use NCs efficiently in applications. In the work reported in this thesis ZnO NCs were studied. At MAX-lab in Lund, synchrotron radiation based Spectroscopic Photoemission and Low Energy Electron Microscopy (SPELEEM) and X-ray Photoelectron Spectroscopy (XPS) were used. At Karlstad University characterization was done using Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Atomic Force Microscopy (AFM), Scanning Tunnelling Microscopy (STM), Auger Electron Spectroscopy (AES), and XPS. The fundamental properties of ZnO surfaces were studied using distributions of ZnO NCs on SiO2/Si surfaces. The conditions for distribution of ZnO NCs were determined to be beneficial when using ethanol as the solvent for ultrasonically treated dispersions. Annealing at 650 °C in UHV cleaned the surfaces of the ZnO NCs enough for sharp LEEM imaging and chemical characterization while no sign of de-composition was found. A flat energy band structure for the ZnO/SiO2/Si system was proposed after 650 °C. Increasing the annealing temperature to 700 °C causes a de-composition of the ZnO that induce a downward band bending on the surfaces of ZnO NCs. Flat ZnO NCs with predominantly polar surfaces were grown using a rapid microwave assisted process. Tuning the chemistry in the growth solution the growth was restricted to only plate-shaped crystals, i.e. a very uniform growth. The surfaces of the NCs were characterized using AFM, revealing a triangular reconstruction of the ZnO(0001) surface not seen without surface treatment at ambient conditions before. Following cycles of sputtering and annealing in UHV, we observe by STM a surface reconstruction interpreted as 2x2 with 1/4 missing Zn atoms. / Baksidestext The understanding of the surfaces of materials is of crucial importance to all of us. Considering nanocrystals (NCs), that have a large surface to bulk ratio, the surfaces become even more important. In the work in this thesis ZnO NCs were studied. The fundamental properties of ZnO surfaces were studied using distributions of ZnO NCs on SiO2/Si surfaces. Annealing at 650 °C in UHV cleaned the surfaces of the ZnO NCs enough for sharp LEEM imaging and chemical characterization while no sign of de-composition was found. A flat energy band structure for the ZnO/SiO2/Si system was proposed after 650 °C. Increasing the annealing temperature to 700 °C causes a de-composition of the ZnO that induce a downward band bending on the surfaces of ZnO NCs. Flat ZnO NCs with predominantly polar surfaces were grown using a microwave assisted process. Tuning the chemistry in the growth solution the growth was restricted to only plate-shaped crystals, i.e. a very uniform growth. The surfaces of the NCs were characterized using AFM, revealing a triangular reconstruction of the ZnO(0001) surface not seen without surface treatment at ambient conditions before. Following cycles of sputtering and annealing in UHV, we observe by STM a surface reconstruction interpreted as 2x2 with 1/4 missing Zn atoms.
|
190 |
Studies of Optically Induced Magnetization Dynamics in Colloidal Iron Oxide NanocrystalsHsia, Chih-Hao 2010 August 1900 (has links)
Studying dynamics of magnetization relaxation in excited magnetic materials is
important both for understanding the rates and pathways of magnetization relaxation and
for the potential use in spin-based electronics and data storage devices in the future.
Previous studies have demonstrated that the size of nanocrystals is an important factor
for energy relaxation in quantum dots and metal nanoparticles. Since magnetization
relaxation is one of energy relaxation pathways, the size of nanocrystals may be also an
important factor for magnetization relaxation in nanoscale magnetic materials. The goal
of this study is to have a better understanding of magnetization relaxation in nanoscale
magnetic materials. In particular, we focused on the correlation between the nanocrystal
size and the rates of spin-lattice relaxation (SLR), a magnetization relaxation pathway, in
magnetic nanocrystals.
The size-dependent magnetization relaxation rate after optically induced
demagnetization in colloidal Fe3O4 nanocrystals was measured by using time-resolved
Faraday rotation (FR). Fe3O4 nanocrystals were chosen as the model system to study the correlation between the size of nanocrystals and the rates of SLR due to the wellestablished
synthetic procedure of making nanocrystals with various sizes and narrow
size dispersion. Faster SLR rates were observed in smaller Fe3O4 nanocrystals. The
results suggested the surface of nanocrystals have higher efficiency of SLR than the
interior region by using a simple model to analyze the SLR rates of Fe3O4 nanocrystals
with various sizes. Higher efficiency of SLR at the surface may be due to the stronger
spin-orbit coupling at the surface relative to the interior region. In addition to
magnetization dynamics studies, the effect of oxidation on static FR in iron oxide
nanocrystals (between Fe3O4 and y-Fe2O3) was studied. The results indicated FR signal
is linearly correlated to the strength of optical transition between Fe2 and Fe3 in Fe3O4
for a given size of nanocrystals.
|
Page generated in 0.0387 seconds