• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 357
  • 59
  • 57
  • 57
  • 8
  • 8
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • Tagged with
  • 638
  • 113
  • 100
  • 97
  • 86
  • 75
  • 65
  • 61
  • 60
  • 58
  • 55
  • 51
  • 50
  • 47
  • 46
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
151

Investigation of the effects of zinc oxide nanoparticles and synthesized cellulose nanocrystals (CNCs) on emulsion-based drilling fluids

Aka, Tiemele Wilfried Anderson January 2019 (has links)
A thesis submitted to the Faculty of Engineering and the Built Environment in fulfilment of the requirement for the Degree of Masters of Science, University of the Witwatersrand, Johannesburg, 2019 / Drilling Mud holds an important role in the drilling process in such a way that it is a determinant key to the success of the operation as well as the money spent throughout the process. Indeed the success and the cost of the operation can be severely impacted by some challenges experienced while drilling such as temperature and pressure conditions which leads to fluid loss, fluid deterioration...As a result there is a need to formulate a fluid with desirable rheological properties to withstand such undesirable parameters. Therefore this work was aimed to improve emulsion drilling fluids (EDFs) based nanoparticles with enhanced properties. Many investigations were performed to find a proper emulsion stability as well as a good drilling fluid performance. The stability of the prepared emulsion drilling fluids was done using surfactant with different concentrations for several days. After several days of preparation, the EDFs containing DTAB as surfactant have showed a better emulsion stabilizer compared to the Triton X-100 ones. In addition an investigation combining both NPs and surfactants confirmed the used of NPs to improve DF and revealed the effective use of ZnO NPs for drilling fluids application and preferentially with DTAB as surfactant. Following that result, the 2nd part of the work was based on the synthesis and characterization of CNCs as NPs to formulate EDF with DTAB as surfactant. The CNCs NPS were successfully obtained via the method of oxidation of microfibrillated cellulose through TEMPO-mediate and after characterization using TEM, spherical NPs with small size varying from 10-50nm were observed. The FANN® Model 35 viscometer served to display the behavior of the shear stress and viscosity of the prepared fluids against variable shear rate at variable NPs and temperature concentration. The rheological and filtration properties were increase with increase in CNCs content from 0.8 to 1.2% of fluid in room temperature and with an increase in temperature. / PH2021
152

Polyelectrolyte multilayer films containing nanocrystalline cellulose

Cranston, Emily D. January 2008 (has links)
No description available.
153

Phase separation phenomena in cellulose nanocrystal suspensions containing dextran-dye derivatives

Beck, Stephanie Christine. January 2007 (has links)
No description available.
154

Production of nanocrystalline aluminium alloy powders through cryogenic milling and consolidation by dynamic magnetic compaction

Seminari, Umugaba. January 2007 (has links)
No description available.
155

Synthesis and Investigation of Novel Nanomaterials for Improved Photocatalysis

Chen, Xiaobo 01 June 2005 (has links)
No description available.
156

Developing Nanomaterials for Energy Conversion

Zhao, Yixin 18 May 2010 (has links)
No description available.
157

The Catalytic Activity of Gold/Cadmium Sulfide (Au/CdS) Nanocrystals

Bastola, Ebin 02 July 2014 (has links)
No description available.
158

Synthesis and Applications of Heterostructured Semiconductor Nanocrystals.

Khon, Elena 26 July 2013 (has links)
No description available.
159

Effects of the Non-ionic Surfactant Tween 80 on the Enzymatic Hydrolysis of Model Cellulose and Lignocellulosic Substrates

Jiang, Feng 03 October 2011 (has links)
Non-ionic surfactants are known to enhance the biochemical conversion of lignocellulosic (LC) biomass to bioethanol. Their mechanisms of action, however, are incompletely understood. This research was conducted to elucidate the effects of the non-ionic surfactant Tween 80 on the enzymatic hydrolysis of cellulose and LC substrates. Model cellulose substrates were prepared from cellulose nanocrystals (CNCs) obtained by sulfuric acid hydrolysis of wood pulp. Two methods were developed for the removal of the sulfate groups on the CNCs, resulting from the use of sulfuric acid in their preparation. The effect of sulfate groups, which may be introduced into LC biomass during pretreatment with sulfuric acid, on the enzymatic hydrolysis of cellulose was studied with model cellulose substrates prepared from CNCs with different sulfate group densities. Adsorption of cellulases onto sulfated substrates increased with increasing sulfate group density but their rate of hydrolysis decreased. The decrease indicated an inhibitory effect of sulfate groups on the enzymatic hydrolysis of cellulose, possibly due to non-productive binding of the cellulases onto the substrates through electrostatic interactions instead of their cellulose binding domains. The effect of Tween 80 on the adsorption of cellulases onto lignin, often present as residual lignin in pretreated biomass, was studied with model lignin substrates, prepared from kraft lignin, organosolv lignin, and milled wood lignin. Cellulases appeared to adsorb onto the lignin substrates via both hydrophobic and polar interactions. Tween 80 molecules on the lignin substrates seemed to hinder cellulase adsorption via hydrophobic interactions and reduced the adsorption rate. Finally, the effects of lignin and Tween 80 on the enzymatic hydrolysis of cellulose and LC substrates were studied. Lignin hindered both the adsorption of cellulases onto the substrates and the enzymatic hydrolysis of the substrates. Tween 80 was found to form surfactant–protein complexes with cellulases in solution without compromising cellulase activity. Either substrate-adsorbed or in solution, Tween 80 had no effect on the hydrolysis of cellulose by cellulases. Substrate-adsorbed Tween 80 increased the apparent enzymatic hydrolysis rates of LC substrates but the ability of Tween 80 to increase their apparent hydrolysis rate depended strongly on their structural properties and the chemical properties of the lignin. Hence, Tween 80 may be able to mitigate the inhibitory effect of lignin on the enzymatic hydrolysis of pretreated biomass. / Ph. D.
160

The Isolation of Cellulose Nanocrystals from Pistachio Shells and Their Use in Water Actuating Smart Composites

Marett, Josh Michael 14 September 2017 (has links)
In recent years, there has been a significant amount of research into cellulose nanocrystals (CNCs). These materials are categorized as being between 5 and 10 nm wide and being 100-250 nm long. CNCs have several uses, but the most common is the reinforcement of polymer composites. Here I present 2 papers investigating CNC-based composites. By using standard bleaching procedures, pure cellulose was isolated from pistachio shells. Sulfuric acid was used to isolate cellulose nanocrystals from the purified cellulose. The obtained crystals were investigated by scanning electron microscopy, transmission electron microscopy, and X-ray diffraction. The CNCs were also added to thermoplastic polyurethane (TPU) to observe the reinforcement effects by dynamic mechanical analysis. Pistachio shells offered a high yield source material for CNCs, with a high aspect ratio but a low crystallinity. They did offer significant reinforcement of the TPU, but less than the commercially available wood-based CNCs. Wood-based CNCs were also mixed with TPU in structured composites to create a film which actuates when exposed to water. The method of actuation is based on the different amounts of absorption of water in the composite as opposed to the pure TPU. The actuation was modeled based on the absorption of water and the modulus of two components. Mechanical properties of the CNC/TPU composites were evaluated via dynamic mechanical analysis, and water absorption was measured gravimetricaly. The tests helped us to evaluate our model which we compared to the composites. / Master of Science / Composites are a category of materials where two or more materials are used together to enhance each of their strengths. Such materials are often used in airplanes, spacecraft, sporting equipment, and many high-end products. Cellulose nanocrystals (CNCs) have been research with the goal of improving the environmental sustainability and performance of composite materials. This newly utilized material is found in plants and some animals to provide them with their strength. Researches have already shown that CNCs can improve the performance of many materials while reducing their lifetime environmental impact. In order to increase the market for CNCs, we are looking at costreducing methods of producing them as well as finding exciting new uses for them once they are made. Right now, most CNCs are isolated from wood or cotton, which already have existing markets. This thesis presents a method of using pistachio shells, which are a waste product in many parts of the world including the United States. By finding new sources of CNCs, we hope to add to the body of knowledge and reduce the price of CNC production. This thesis also lays the groundwork for a material that changes shape when exposed to water. By integrating CNCs into only part of a polymer, when water is added, the part with the CNCs will increase in size, causing it to push on the polymer. Our hope is to create a new use for CNC composites to help to increase the market for them. We discuss potential methods and proofs of concept on how to create a 3D-printed part using CNCs and polyurethane.

Page generated in 0.0902 seconds