• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 357
  • 59
  • 57
  • 57
  • 8
  • 8
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • Tagged with
  • 638
  • 113
  • 100
  • 97
  • 86
  • 75
  • 65
  • 61
  • 60
  • 58
  • 55
  • 51
  • 50
  • 47
  • 46
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
141

Protein-mediated nanocrystal assembly for floating gate flash memory fabrication

Tang, Shan, January 1900 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 2008. / Vita. Includes bibliographical references.
142

Desenvolvimento de Microssensores do tipo ISFETs a base de Nanoeletrodos de Ag e Au / Fabrication of ISFET-Microsensors based on Ag and Au Nanoelectrodes

Kisner, Alexandre, 1982- 08 August 2007 (has links)
Orientador: Lauro Tatsuo Kubota / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Química / Made available in DSpace on 2018-08-08T22:44:52Z (GMT). No. of bitstreams: 1 Kisner_Alexandre_M.pdf: 3973690 bytes, checksum: 2810b47ecfaaac028a1bf271a3fc25a0 (MD5) Previous issue date: 2007 / Conjuntos de transistores de efeito de campo sensíveis a íons (ISFETs) foram desenvolvidos no presente trabalho. Implementou-se durante a fabricação destes uma etapa adicional de anodização que possibilitou a formação de uma fina camada de alumina porosa sobre suas portas. Esta serviu como dielétrico e também molde para o crescimento de nanocristais de Ag e Au sobre os dispositivos. Os transistores desenvolvidos foram divididos em dois conjuntos, onde as dimensões de porta de cada conjunto foram de 10 x 50 mm e 50 x 50 mm. Utilizando-se um processo simples de anodização, obteve-se sobre a porta dos transistores uma fina camada de alumina de aproximadamente 60 nm de espessura, contendo uma alta densidade de poros (~ 10 poros/cm) com diâmetro médio de 30 + 6 nm e distribuídos de forma regular. A implementação desta possibilitou não só um aumento significativo na área de porta, bem como molde para o crescimento de nanoestruturas de Ag e Au sobre os transistores, atuando assim como nanoeletrodos de porta. Os testes destes como sensores para soluções com diferentes valores de pH, mostraram que os dispositivos apresentam um curto tempo de resposta (t < 30 s) e que as nanoestruturas metálicas são capazes de aumentar a sensibilidade dos dispositivos em relação àqueles formados apenas por alumina. Os primeiros testes para a detecção de moléculas como glutationa, demonstraram que os ISFETs fabricados são capazes de detectar esta, mesmo sendo uma espécie com baixa densidade de carga, em concentrações submicromolares / Arrays of ion-sensitive field effect transistors (ISFETs) were developed in this work. An additional step in the fabrication process was employed to implement a thin film of porous anodic alumina on the gate. This porous layer works as dielectric and template to the vertical growth of Ag and Au nanocrystals on the gate. The produced ISFETs were divided in two groups, which the gate dimensions were 10 x 50 mm and 50 x 50 mm. Using a simple anodizing process, a 60 nm thickness porous anodic alumina was developed on the gate. This porous film presented a high density porosity (~ 10 pores/cm) with an average pore diameter of 30 + 6 nm and a regular distribution on the gate of those ISFETs. This porous film lead to a significant increase in the gate area and also worked as a template to the growth of Ag and Au nanocrystals, which were used as gate nanoelectrodes. The results of such sensors to detect different pH of the solutions showed that the produced ISFETs present a short response time (t < 30 s). Moreover, the presence of such Ag and Au nanostructures increased the sensors sensitivity in comparison to those observed without nanoelectrodes. The first results to detect species such as glutathione, indicated that the ISFETs are even sensitive to detect small charged species in a submicromolar concentration range / Mestrado / Quimica Analitica / Mestre em Química
143

Characterization and application of amadumbe starch nanocrystals in biocomposite films

Mukurumbira, Agnes R. January 2017 (has links)
Submitted in fulfilment of the academic requirement for the Degree of Masters in Food Science and Technology, Durban University of Technology, 2017. / Amadumbe (Colocasia Esculenta) commonly known as Taro is an underutilized tuber crop that produces underground corms. It is a promising tropical tuber grown in various parts of the world including South Africa, where it is regarded as a traditional food. It is a significant subsistence crop, mostly cultivated in rural areas and by small scale farmers. Amadumbe is adapted to growing in warm and moist conditions. The tubers are characterised by a high moisture content and consequently high post-harvest losses. The losses can be minimized through the utilization of various preservation techniques such as flour and starch production. Amadumbe corms may contain up to 70-80% starch. The starch granules are characterised by a small size and relatively low amylose content. The combination of high starch content, low amylose and small starch granules thus make amadumbe a potentially good candidate for nanocrystal production. In this study two amadumbe varieties were utilized to extract starch. Amadumbe starch nanocrystals (SNC) were produced using an optimized hydrolysis method. The physicochemical properties (morphology, crystallinity, thermal properties) of the resulting SNC were investigated. The SNC were then applied as fillers in three different matrices namely, amadumbe starch, potato starch and soy protein. The influence of the SNC at varying concentrations (2.5, 5 and 10%) on the physicochemical properties of bio-composite films was examined. Amadumbe starch produced a substantially high yield (25%) of SNCs. The nanocrystals appeared as aggregated as well as individual particles. The individual nanocrystals exhibited a square-like platelet morphology with sizes ranging from 50-100 nm. FTIR revealed high peak intensities corresponding to O-H stretch, C-H stretch and H2O bending vibrations for SNCs compared to their native starch counterparts. Both the native starch and SNC exhibited the A–type crystalline pattern. However, amadumbe SNCs showed a higher degree of crystallinity possibly due to the removal of the armorphous material during acid hydrolysis to produce SNCs. Amadumbe SNC showed slightly reduced melting temperatures compared to their native starches. The SNC presented similar thermal decomposition properties as compared to their native starches. In general, the inclusion of SNCs significantly decreased water vapour permeability (WVP) of composite films whilst thermal stability and tensile strength were increased. The degree of improvement in the physicochemical properties of the films varied with the type of matrix as well as the concentration of the nanocrystals. It generally seemed that the enhancement of the physicochemical properties of starch matrices occurred at a lower SNC concentration in comparison to that of soy protein films. Amadumbe SNC can indeed potentially be used as a filler to improve the properties of biodegradable starch and protein films / M
144

Resonance Energy Transfer Using ZnO Nanocrystals And Magnetism In The Mixed Metal Layered Thiophosphates, Mn1-xFexPS3(0≤x≥1)

Rakshit, Sabyasachi 04 1900 (has links) (PDF)
This thesis consists of two parts. The first part deals with the visible emission of ZnO Nanocrystals and its possible application in Resonance Energy Transfer (RET) studies. The second part of the thesis is on the magnetic properties of the layered transition metal Thiophosphates MPS3 (M = Mn, Fe), their solid solutions and intercalation compounds. Recent advances in semiconductor nanocrystals or quantum dots (QDs) as inorganic fluorophores have pioneered a new direction in the fluorescent based techniques to investigate fundamental processes in lifesciences. Their broad absorption spectra with narrow, Size-tunable emissions with high quantum e±ciency and stability under relative harsh environments have made inorganic QD's the fluorophores of choice in many applications. Among inorganic fluorophores the II-VI semiconductors based on cadmium chalcogenides are the front-runners. The cytotoxicity associated with these QDs is, however, a major drawback and has lead to the search for new nanocrystalline fluorophores that are non-toxic and possess the same favorable fluorescence properties as the Cd based QDs, viz, tunability and narrow spectral profile. ZnO Nano particles are known to exhibit two emission bands; a narrow emission band in UV around 380 nm (3.25 eV) at a wavelength just below the onset of the band gap excitation in the absorption spectra and a broad emission band in the blue-green part of the visible spectrum, with a maximum between 500 and 550 nm (2.5-2.2 eV). The UV Emission originates from the recombination of bound excitons - excited electrons in the Conduction band with holes in the valence band. The visible emission of ZnO nanocrystals is known to involve deep trap states that lie approximately midway between the Conduction and valence bands and surface defects that exist as shallow traps. In principle, visible-light-emitting ZnO nanocrystals would be ideal candidates as replacement for Cd-based fluorescent labels since they are nontoxic, less expensive, and chemically stable in air. Nanoscale ZnO, however, tends to aggregate and/or undergo Ostwald ripening be-Cause of high surface free energy resulting in an increase in crystallite size and consequent Disappearance of the visible emission. Most attempts to stabilize the ZnO nanocrystals by Capping has usually resulted in the quenching of the visible trap emission. The objective of the present study was to stabilize the visible light emission of ZnO nanocrystals, to Understand the origin and mechanism of the visible emission and to explore the possibility Of using the visible emission of ZnO in RET studies. The stabilization of visible light emission in ZnO nanocrystals was achieved by forming ZnO:MgO core-shell nanocrystals. The nanocrystals were synthesized by a sequential preparative procedure that involved formation of a ZnO core followed by an MgO shell. The Nanocrystals were characterized by using XRD, TEM, optical absorption and photoluminescence spectroscopy. These are described in Chapter 2 of the thesis. The ZnO: MgO Core-shell nanostructures exhibit stable emission in the visible for extended periods. Application of the ZnO: MgO nanocrystals either as fluorescent probes or RET studies require that they be dispersible in both polar and non-polar solvents. This as realized by appropriate choice of the capping agents (Chapter 3). ZnO: MgO nanocrystals with hydrophobic surface were obtained by capping the nanocrystals with oleic acid. The oleate capped ZnO: MgO nanocrystals are soluble in a variety of non-polar organic solvents with no change in their emission properties. Water-soluble ZnO: MgO nanocrystals were obtained by capping the ZnO:MgO nanocrystals with carboxymethyl-β-cyclodextrin (CMCD). The hydroxyl groups located at the rim of the cyclodextrin cavity renders the surface hydrophilic. The integrity of the CMCD molecules are preserved on capping and their by hydrophobic cavities available for host-guest chemistry. The visible emission of The ZnO: MgO nanocrystals are unaltered by the nature of the capping agent. The origin and mechanism of the visible emission from ZnO: MgO nanocrystals has been Investigated using time-resolved emission spectroscopy technique (Chapter 4). The time-evolution of the photoluminescence spectra show that there are, in fact, two features in the visible emission whose relative importance and efficiencies vary with time. These features originate from recombination involving trapped electrons and holes, respectively, And with efficiencies that depend on the occupancy of the trap density of states. The application of the visible emission of ZnO: MgO nanocrystals as resonance energy transfer (RET) donors in water and hydrophobic media are demonstrated. In aqueous media, the carboxymethyl β-cyclodextrin (CMCD) capped ZnO: MgO nanocrystals is able to accommodate the organic dye Nile Red by an inclusion in the anchored hydrophobic cyclodextrin cavity forming a 1:1 complex. Nile Red was chosen as the guest molecule because its absorption has appreciable overlap with ZnO: MgO visible emission, a prerequisite for RET to occur. The resonance energy transfer on the band gap excitation of The ZnO core to included Red molecules in the CMCD-ZnO: MgO-Nile Red supramolecular assembly is demonstrated in aqueous media. A similar RET process is shown to occur in the non-polar media in the oleate capped ZnO: MgO nanocrystals when Nile Red is partitioned from the solvent into hydrophobic anchored oleate chains. The wavelength dependent energy transfer in the system has been studied using time-resolved emission spectroscopic technique. The importance of trap states in giving rise to non-Forster distance dependence for the RET is highlighted. The second part of the thesis deals with magnetism in low dimensional layered transition metal thiophophates, MPS3 (M = Mn, Fe). Low dimensional magnetic systems continue to be a fertile ground for discovering new phenomena and properties. Among two-dimensional magnetic systems the insulating transition metal thiophosphates are one of the few known layered systems, in which both magnetic and crystallographic lattices are two dimensional (2D). In the metal chalcogenophosphates, the magnetic MPX3 layers are separated by a van der Waals gap that effectively rules out interlayer exchange and hence these systems are nearly perfect 2D magnetic systems, with the magnetic ions forming a honeycomb arrangement within the layer. Due to the crystallographic two-dimensional nature these materials may be intercalated by variety of molecules or ions leading to change in magnetic properties. The objective of this thesis work is to try and modify the magnetic properties of the transition metal thiophosphates either by forming solid solutions of the type, M1-xMxPS3, (M, M = Mn, Fe) or by intercalating hydrated metal ions within the layers. The structure, Bonding, reactivity and magnetic properties are briefly introduced in Chapter 7. The Scope and nature of the present work in presented towards the end of the chapter. MnPS3 and FePS3 have identical crystal structures and both order antiferromagnetically at low temperatures, TN. The in-plane magnetic structures of the antiferromagnetically ordered the Neel state in the two compounds are, however, different. In MnPS3 the spins Alternate up-down whereas in FePS3 the spins are arranged as ferromagnetic chains with Alternate chains coupled antiferromagnetically. Since the crystal structures are identical, These two compounds can form solid solutions, Mn1-xFexPS3(0≤x≥1) over the entire concentration range. The magnetic properties of the single crystals of the solid solutions was measured by using a SQUID magnetometer. This system is of interest since the contrasting Neel states of the end-members may give rise to new magnetic phenomena at intermediate composition. It is shown that the magnetic behavior falls into three distinct categories. The Mn-rich compositions behave like a dilute MnPS3 lattice, the Fe-rich compositions behave like dilute FePS3 and in the intermediate compositions a spin-glass like phase appears. The phase boundaries for these regime in Mn1-xFexPS3, 0≤x≥1 is shown to be related to the percolation threshold for a honeycomb lattice. MnPS3 is known to undergo a unusual ion-exchange intercalation reaction. Intercalation occurs by the inclusion of hydrated metal ions in the galleries of MnPS3 with charge neutrality maintained by loss of the Mn2+ ions from the layer (Equation). MnPS3 + 2xG+ (aq) → Mn1-xPS3 [G (H2O) y] 2x + xMn2+ (aq) Where G is a neutral guest species. This chemistry has been exploited to intercalate hydrated Mn2+ ions in the interlamellar space to give Mn1-xPS3[Mn(H2O)6]x. the magnetic properties of this 3D analogue of MnPS3 has been investigated in Chapter 9.
145

Catalytic and Electronic Activity of Transition Metal Dichalcogenides Heterostructures

Li, Baichang January 2021 (has links)
The synthesis of transition metal dichalcogenides (TMDs) are crucial to realization of their real-world applications in electronic, optoelectronic and chemical devices. However, the fabrication yield in terms of material quality, crystal size, defect density are poorly controlled. In this work, by employing the up-to-date stack-and-transfer and nano fabrication techniques, synthetic TMDs that obtained from different growth methods with various crystal qualities were studied. In most of the cases, better crystals with lower defect densities and larger crystal domain sizes are preferred. Self-flux method was developed to obtain better quality crystals comparing to the traditional chemical vapor transport, as characterized by lower defect densities. BN encapsulating graphene device platform was utilized and TMDs monolayers with different defect densities was inserted in between the BN/graphene interface, where intrinsic defects from the TMDs disturbed the electronic environment of graphene. With the better TMD crystal insertion, we obtain much better electrical performed device in terms of hysteresis, FWHM of Dirac peak and electron mobility. This device also showed advantage in quantum transport measurements . On the other hand, the presence of defects are not always undesired, especially when it comes to serve as electrocatalysts, in which most of the reactions take place at vacancy sites. However, similar to most of the MoS2 electronic devices, forming barrier-free metal semiconductor contact is the major challenge. We develop a platform that contact resistance could be monitored simultaneously with electrochemical activity. In this platform, the total device resistance is significantly reduced before electrochemical reaction happens while the intrinsic catalytic activity of the MoS₂ can be extracted. With this platform, we found the intrinsic catalytic activity of MoS₂ strongly correlated to H-coverage on its surface. By adding molecular mediator into electrolytes, H-coverage and the resulting HER activity was enhanced via “Catch and Release” mechanism. Molecular simulation was performed to support our experimental results.
146

Bioprinting of Pancreatic Cancer Cells for Improved Drug Testing

Rehovsky, Chad Austin January 2019 (has links)
Currently, many drugs are preclinically tested on two-dimensional cell cultures. However, this method does not adequately replicate the cellular interactions or diffusion gradient that occur in three-dimensional tissues, leading to poor indicators of how a drug may affect human tissues. The objective of this project was to use bioprinted pancreatic cancer cell cultures as a platform for three-dimensional drug testing. Various bioink formulations of cellulose, gelatin, and alginate were evaluated to determine which provided the best printability and cell viability. A cellulose nanocrystal and alginate hydrogel showed superior printability due to its shear thinning properties. Additionally, initial cell viability was nearly 80%, and it remained above 60% over four days. Use of a custom spinning bioreactor at 50 rpm resulted in no improvements to cell viability. Overall, the system shows potential as a drug testing platform to evaluate the effectiveness of various drug formulations on three-dimensional pancreatic cancer cell cultures.
147

Nanocrystals and Nanoclusters as Cocatalysts for Photocatalytic Water Splitting

Sinatra, Lutfan 04 December 2016 (has links)
The energy consumptions worldwide have increased simultaneously with the growth of the population and of the economy. Nowadays, finding an alternative way to satisfy the energy demand is one of the great challenges for the future of humanity, especially due to the limitation of fossil fuels and their effect on global warming. Hydrogen, as an alternative fuel for the future, is very attractive. Compared to traditional methods, such as the steam reforming of natural gas or coal gasification, photocatalytic water splitting (PWS) is considered to be the most sustainable alternative for producing hydrogen as a future fuel. PWS usually relies on semiconductor material that can transform the absorbed solar photon into photogenerated electrons and holes, creating a photopotential which can drive the electrochemical production of molecular hydrogen from the reduction of water. Despite its promising application, semiconductor-based PWS usually suffers from low carrier mobility and short diffusion length. Furthermore, the recombination of photogenerated electrons and holes might occur, especially if there are no suitable reaction sites available on the surface of the semiconductor. In order to facilitate the catalytic reactions on the surface of the semiconductor, the presence of a cocatalyst is necessary in order to obtain more efficient PWS processes. To this day, noble metals such as Pt, Pd, RuO2 and IrO2 are still the benchmark cocatalysts for PWS. Nevertheless, due to their high cost and limited supply, it is mandatory to develop a suitable strategy and to identify more efficient materials. Therefore, within the framework of this dissertation, novel cocatalysts and strategies that can improve the efficiency of the photocatalytic water splitting processes have been developed. Firstly, we developed a cocatalyst combining noble metals and semiconductors by means of partial galvanic replacement of the Cu2O nanocrystal with Au. The deposition of this cocatalyst on TiO2 was studied for the photocatalytic H2 production in order to explore the synergistic effect of the plasmonic resonance from the Au nanoparticles and pn-junction between Cu2O and TiO2. Additionally, the plasmonic effect of the Au films was also studied and utilized in order to improve the PWS. Secondly, the nanoscaling of cocatalysts was studied in order to improve the efficiency thereof and to reduce the cost of the cocatalyst materials. Moreover, it is sought to explore the quantum size effect on the properties of the cocatalyst and their effect on the photocatalytic reaction. Atomically precise Au and Ni nanoclusters were employed in these studies. Au nanoclusters were studied in relation to the cocatalysts in the photocatalytic water splitting, and Ni nanoclusters were studied in relation to the cocatalysts in the electrocatalytic water oxidation. The results of these studies will provide new insights in relation to the strategy used in order to develop efficient cocatalysts for the purpose of photocatalytic water splitting.
148

Synthesis, Self-assembly and Regrowth of Lead Halide Perovskite Nanocrystals

Liu, Jiakai 28 October 2020 (has links)
Over the last decade, impressive development in lead halide perovskites (LHPs) have made them leading candidate materials for photovoltaics (PVs), X-ray scintillators, and light-emitting diodes (LEDs). The success of LHPs NCs in lighting and display applications is mainly originated from their high photoluminescence quantum yield (PLQY), narrow emission, sizable bandgap, and cost-effective fabrication. Consequently, a comprehensive understanding of the design principles of LHP NCs will fuel further innovations in their optoelectronic applications. This dissertation centers on the synthesis and self-assembly of LHP NCs. At first, we investigate the capability of colloidal synthetic routine to engineer the shape, size, and dimensionality of the resulting LHPs NCs (chapter 2), including 0D nanospheres, 2D nanoplates, and 3D nanocubes. Starting from the LHPs NCs, nanoplates (chapter 3), nanowires (chapter 4), and superstructures (chapter 5) are successfully achieved via various self-assembly strategies. In chapter 3, we present a liquid-air interfaces-assisted self-assembly technique to obtain micro-scale CsPbBr3 nanoplates from as-synthesized nanoscale NCs. The AC-HRTEM offered an atomic-level observation during the structural evolution and revealed an oriented attachment-mediated assembly mechanism. The assembled CsPbBr3 nanoplates exhibited ultrahigh stability under X-ray energy dispersive spectroscopy (EDS) mapping conditions (300-kV electron beam), and the first atomic-resolution EDS elemental mapping data of LHP NCs were acquired. In chapter 4, we demonstrate an efficient green-chemistry approach for the self-assembly of CsPbBr3 NCs into 1D nanowires and nanobelts via the light induction. As an elegant and promising green-chemistry approach, light-induced self-assembly represents a rational method for designing perovskites. In chapter 5, we will explore the self-assembly of CsPbBr3 NCs into superstructures to overcome the ‘green gap’ to achieve a pure green emission with high PLQY for realizing next-generation vivid displays. In summary, we systematically investigated the mechanisms of LHP NC self-assembly, the kinetics of their morphological evolution and phase transitions, and driving forces that govern the self-assembly process. The assembled LHP NCs manifest desirable properties (e.g., superfluorescence, improved photoluminescence lifetime, enhanced stability against moisture, light, electron-beam irradiation, and thermal-degradation) that translate into dramatic improvements in device performance.
149

Aggregative Growth of Colloidal Semiconducting Nanocrystals for Nanoshell Quantum Dots and Quantum Dot Molecules

Cassidy, James 13 May 2022 (has links)
No description available.
150

Energy Transport in Colloidal Inorganic Nanocrystals

Yang, Mingrui 24 May 2021 (has links)
No description available.

Page generated in 0.0793 seconds