• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 357
  • 59
  • 57
  • 57
  • 8
  • 8
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • Tagged with
  • 638
  • 113
  • 100
  • 97
  • 86
  • 75
  • 65
  • 61
  • 60
  • 58
  • 55
  • 51
  • 50
  • 47
  • 46
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Advanced electron microscopy techniques for mechanistic studies of the growth and transformation of nanocrystals

Lewis, Edward January 2016 (has links)
The morphology, composition, and distribution of elements within nanocrystals are critical parameters which dictate the material's properties and performance in a diverse array of emerging applications. The (scanning) transmission electron microscope ((S)TEM) represents a powerful tool for probing the structure and chemistry of materials on the nanoscale. Understanding of the mechanisms by which nanocrystals grow, transform, and degrade is vital if we are to develop rational synthesis routes and hence control the properties of the resulting materials. Electron microscopy represents a key tool in developing such an understanding. In situ techniques, where the material of interest is subjected to stimuli such as heat or a chemically reactive environment in the microscope, allow direct observation of dynamic transformations. Ex situ approaches, where multiple samples are prepared in the lab with the reaction parameters systematically altered, can also give important mechanistic insights. This thesis explores the use of both in situ and ex situ (S)TEM to gain insights into the growth and transformation of nanocrystals. Ex situ TEM is used to assess the structure of PbS nanocrystals in a polymer matrix, revealing new methods of morphological control through reaction temperature, precursor structures (appendix 4), and the processing of the polymer matrix (appendix 5). In situ techniques are used to observe the solution phase growth and shelling of nanocrystals (appendix 1) as well as the transformations of nanocrystals during heating in vacuum (appendices 2 and 3). The subjects of my in situ investigations are systems with heterogeneous distributions of elements. Historically, in situ electron microscope has been largely limited to imaging. However, to understand many dynamic transformations knowledge of changing elemental distributions is vital. For this reason, I have focused on the use of energy dispersive X-ray (EDX) spectroscopy to reveal changes in composition and elemental distributions during in situ experiments (appendices 1-3). This type of in situ elemental mapping is especially challenging for liquid-cell experiments, and my results represent the first report of EDX spectrum imaging for nanomaterials in liquid (appendix 1).
102

Angle-, energy- and position-resolved plasmon resonance coupling between gold nanocrystals. / 金顆粒納米晶中角度、能量和空間位置分辨的表面等離子共振耦合 / Angle-, energy- and position-resolved plasmon resonance coupling between gold nanocrystals. / Jin ke li na mi jing zhong jiao du, neng liang he kong jian wei zhi fen bian de biao mian deng li zi gong zhen ou he

January 2010 (has links)
Shao, Lei = 金顆粒納米晶中角度、能量和空間位置分辨的表面等離子共振耦合 / 邵磊. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2010. / Includes bibliographical references. / Abstracts in English and Chinese. / Shao, Lei = Jin ke li na mi jing zhong jiao du, neng liang he kong jian wei zhi fen bian de biao mian deng li zi gong zhen ou he / Shaolei. / Abstract --- p.1 / 摘要 --- p.iii / Acknowledgement --- p.v / Table of Contents --- p.vii / List of Figures --- p.ix / List of Tables --- p.xiv / Chapter 1. --- Introduction --- p.1 / Chapter 1.1 --- Localized Surface Plasmon Resonances of Noble Metal Nanocrystals --- p.3 / Chapter 1.1.1 --- Dielectric Functions of Noble Metal Nanocrystals --- p.3 / Chapter 1.1.2 --- Absorption and Scattering of Light by Noble Metal Nanoparticles --- p.7 / Chapter 1.2 --- Coupling between Localized Surface Plasmons --- p.14 / Chapter 1.2.1 --- Theoretical Treatments for Plasmon Coupling --- p.14 / Chapter 1.2.2 --- Unique Properties Resulting from Plasmon Coupling --- p.15 / Chapter 1.2.3 --- Applications Based on Plasmon Coupling --- p.17 / Chapter 1.3 --- Outline of Thesis --- p.18 / Chapter 2. --- Growth of Gold Nanocrystals and Characterization Techniques --- p.26 / Chapter 2.1 --- Growth of Gold Nanocrystals --- p.26 / Chapter 2.2 --- Characterization Techniques --- p.29 / Chapter 3. --- Surface Plasmon Coupling in Homodimers of Elongated Gold Nanocrystals --- p.34 / Chapter 3.1 --- Formation of Homodimers of Elongated Gold Nanocrystals --- p.35 / Chapter 3.2 --- Angle-Resolved Plasmon Coupling in Gold Nanorod Dimers --- p.37 / Chapter 3.2.1 --- Experimental Results --- p.39 / Chapter 3.2.2 --- FDTD Calculations --- p.43 / Chapter 3.2.3 --- Dipolar Modeling --- p.49 / Chapter 3.3 --- Effect of the Head Shape on the Plasmon Coupling --- p.57 / Chapter 3.4 --- Summary --- p.60 / Chapter 4. --- Surface Plasmon Coupling in Heterodimers of Gold Nanocrystals --- p.64 / Chapter 4.1 --- Formation of Heterodimers of Gold Nanocrystals --- p.65 / Chapter 4.2 --- Energy-Resolved Plasmon Coupling in Gold Nanorod Heterodimers --- p.67 / Chapter 4.3 --- Position-Resolved Plasmon Coupling in Gold Nanorod-Nanosphere Heterodimers --- p.70 / Chapter 4.3.1 --- Experimental Results --- p.71 / Chapter 4.3.2 --- FDTD Calculations --- p.75 / Chapter 4.4 --- Summary --- p.83 / Chapter 5. --- Summary and Conclusion --- p.87
103

Synthesis and characterisation of metal selenide nanocrystals for use in electronic devices

Airo, Mildred Awuor January 2017 (has links)
A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy in the School of Chemistry Faculty of Science, University of Witwatersrand, 2017 / Advancements in nanotechnology and nanosystems promise to extend limits of sustainable development and environment remediation in an attempt to address some of the world most challenging problems. Specifically, nanotechnology has played an important role in the design, synthesis, and characterization of various new and novel functional nanomaterials possessing extremely unique properties. For example, low dimensional nanostructures such as semiconductor nanocrystals with well controlled sizes, shapes, porosities, crystalline phases, and structures have been prepared via various synthetic methods. In addition these semiconductor nanocrystals have attracted research attention because of their fundamental role in the comprehension of the quantum size effect and great potential applications to save resources and improve the environment. Tremendous studies have established that morphological, optical, catalytic and electronic properties of semiconductor nanocrystals can be manipulated during synthesis by simply varying the growth parameters. Herein we establish the effect of different synthetic methods and several growth parameters on the properties of the as-synthesized semiconducting metal selenides nanocrystals (NixSey and InxSey) including structural, optical, electronic and catalytic properties. For example, reducing coordinating solvent oleylamine was seen to favour a particular morphologies and stoichiometries despite the duration of synthesis. In the case of InxSey nanocrystals, oleylamine favoured indium monoselenide (InSe) nanosheet formation while addition of 1-DDT as a co-surfactant to oleylamine produces In2Se3 nanowires. For NixSey nanocrystals, TOP as a co-surfactant to different ligands favoured the formation Ni3Se2 with different shapes including dots, plates, rods and wires in different solvents. Other parameters studied included the reaction time and temperature. Besides the properties, we probe the potential applications of these materials in dye sensitized solar cells as counter electrodes as well in chemical sensor as the sensing material. NixSey nanocrystals were employed as CE in DSSCs in an attempt to replace the noble expensive platinum conventionally used as CE in most DSSCs. It was established that different stoichiometry played a significant role in the catalytic reduction of I3-. Thus, different photovoltaic performance parameters were obtained with NiSe2 giving a higher PCE of 1.5 % followed Ni3Se4 then Ni3Se2. These values were however very low compared to the ones reported in literature, something that was attributed to low electron mobility, enhanced recombination and reduced catalytic performance as a result of poor device assembly and the organic ligand layer encapsulating the nanocrystal. In another scenerio, indium monoselenide nanocrystals were employed in chemiresistive sensors to detect the presence of a number of VOCs including formaldehyde, methanol, chloroform and acetone in the ambient. Indeed despite the well-known electrical, optical and structural properties previously reported in literature, metal selenides such as CdSe, PbSe and ZnSe among others present lack of investigation for gas sensing. The experimental results showed that different morphologies of InSe nanostructures interacted differently to the analyte gas suggesting difference in the electronic properties of different morphologies. The InSe nanoparticle based sensors gave a good response to HCHO and MeOH fumes and were more selective to HCHO fumes than chloroform and acetone. While those fabricated using the InSe nanosheets though responding well to HCHO recovered half way when exposed back in air and resulted in relatively high noise to signal ratio when exposed to MeOH. The operating temperature range for the InSe sensor devices were determined to be near room temperature. The sensors response was observed to decrease with increasing temperature from 30 °C to 90 °C. Evident from the results, the surface capping molecule (oleylamine) employed to stabilize the nanostructures during synthesis was responsible for the poor sensing abilities of the nanostructures. / XL2018
104

Crystal Growth and Surface Modification of Pyrite for Use as a Photovoltaic Material

Young, Eric Rustad 14 March 2018 (has links)
Pyrite (FeS2) has recently attracted significant interest as a photovoltaic material due to its promising optical properties, high photon to electron conversion yield, and low-cost raw materials. However, hopes have been tempered by recent discoveries that suggest the presence of hard to remove bulk sulfur defects. This research was focused on engineering and implementing the crystallization of pyrite from a sulfur rich solution to counteract the material's natural tendency to form bulk sulfur defects. Homoeptiaxial layers and single-crystal samples have been grown from tellurium sulfur melts with an Fe:S ratio of 1:4 using both natural and synthetic substrates. The homoepitaxial layer has been characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and high resolution transmission electron microscopy (HRTEM), confirming the epitaxial nature of the synthetic FeS2 layer, and X-ray and ultraviolet photoelectron spectroscopy (XPS and UPS) to better understand the energetics of the grown materials. Furthermore, epitaxial growth onto natural pyrite, in contrast to substrate etching, was established using sulfur-34 substitution and secondary ion mass spectrometry (SIMS). Growth onto synthetic pyrite was also described. Finally, the photovoltaic properties of homoepitaxial layers of high temperature solution growth pyrite onto a synthetic templating crystal was characterized using electrochemical methods.
105

Charge storage in nanocrystal systems: Role of defects?

Kan, Eric Win Hong, Choi, Wee Kiong, Chim, Wai Kin, Antoniadis, Dimitri A., Fitzgerald, Eugene A. 01 1900 (has links)
Wet thermal oxidations of polycrystalline Si₀.₅₄Ge₀.₄₆ films at 600°C for 30 and 50 min were carried out. A stable mixed oxide was obtained for films that were oxidized for 50 min. For film oxidized for 30 min, however, a mixed oxide with Ge nanocrystallites embedded in the oxide matrix was obtained. A trilayer gate stack structure that consisted of tunnel oxide/oxidized polycrystalline Si₀.₅₄Ge₀.₄₆/rf sputtered SiO₂ layers was fabricated. We found that with a 30 min oxidized middle layer, annealing the structure in N₂ ambient results in the formation of germanium nanocrystals and the annealed structure exhibits memory effect. For a trilayer structure with middle layer oxidized for 50 min, annealing in N₂ showed no nanocrystal formation and also no memory effect. Annealing the structures with 30 or 50 min oxidized middle layer in forming gas ambient resulted in nanocrystals embedded in the oxide matrix but no memory effect. This suggests that the charge storage mechanism for the trilayer structure is closely related to the interfacial traps of the nanocrystals. / Singapore-MIT Alliance (SMA)
106

Magnetic nanocrystals : synthesis and properties of diluted magnetic semiconductor quantum dots /

Norberg, Nicholas S. January 2006 (has links)
Thesis (Ph. D.)--University of Washington, 2006. / Vita. Includes bibliographical references (leaves 163-175).
107

Low-temperature synthesis of CdS nanocrystals in aliphatic alcohols

Martinsson, Lina January 2010 (has links)
In this report a novel low temperature synthesis approach of CdS nanocrystals is described starting from well known precursors, Cd(SA) and TOP-S, in a ligand system of aliphatic long chain alcohols. A one-pot synthesis approach is applied using a laboratory microwave heating source. The resulting CdS nanocrystals exhibit an absorbance with a pronounced fine-structure, a photoluminescence with a very high ratio between the band gap peak and the defect peak and a fluorescence quantum yield of 33%. Different synthesis approaches have been investigated by changing heating rate, temperature, precursor concentration and chain length of the aliphatic alcohol ligand as well as chain length of the Cadmium precursor. It was found that small changes in the heating rate do not affect the reaction. Changing the reaction temperature between 200°C and 160°C has no visible effects on the quality of the resulting CdS nanocrystals. At 140°C the nanoparticles experience a significant drop in quality, probably because there is a major change in the growth mechanism of the nanocrystals at that low temperature. At 100°C and 120°C the creation of so-called CdS nanoclusters is observed, and a growth mechanism towards nanocrystals based on cluster aggregation is suggested. For the synthesis of high quality nanoparticles it was found that a ratio of 1:25 between precursor and aliphatic alcohol is preferable as well as a ratio of 1:1 between the two precursors. If the chain length of both the precursors and the alcohol is short, the reaction rate is enhanced. If the chain length is too short the nanocrystals grow very fast and the size distribution gets broad, the photoluminescence intensity decreases and the ratio between band gap luminescence and defect luminescence decreases. The best Cd-precursor was found to be Cd-Laurate and the most suitable ligand evaluated was Tetradecanol.
108

Gold and Silver Nanoparticles: Characterization of their Interesting Optical Properties and the Mechanism of their Photochemical Formation

Eustis, Susie 30 May 2006 (has links)
A new method is developed referred to as Gold Nanorod Optical Modeling Equations (GNOME) for determining the average aspect ratio of gold nanorods in solution. In this method, the observed inhomogeneously broadened optical spectrum is fitted to a number of calculated homogeneously broadened spectra with different aspect ratios having different contributions. From this method, the average aspect ratio is determined. This is a more accurate than the presently used method of TEM. The surface plasmon enhanced fluorescence spectra of gold nanorods are calculated as a function of the aspect ratio and compared to experimental spectra. In this calculation, the inclusion of both the aspect ratio distribution calculated from the GNOME method as well as the incorporation of the intrinsic fluorescence of bulk gold are found necessary to model the enhanced fluorescence spectrum of gold nanorods using previously published equations. The enhanced spectrum decreases rapidly as the aspect ratio increases and the surface plasmon band shift away from the gold interband absorption. Photochemical methods are used to synthesize silver nanoparticles on silica surfaces and gold nanoparticles in solution. The formation silver nanoparticles utilizes benzophenone as a photosensitizing agent to initiate the reaction. The effects of the light source and irradiation time are investigated. The presence of different forms of silica are investigated in the formation of metal nanoparticles. This method produced silver nanoparticles on silica that can be in the form of film or powder that are useful in heterogeneous catalysis. Direct photochemical methods are applied to generate gold nanoparticles from chloroauoroic acid in ethylene glycol in the presence of polyvinylpyrrolidone as a capping material. A detailed mechanism of the formation of the gold nanoparticle is determined. This is done by following the kinetics of formation of the gold nanoparticles after irradiation under different conditions. The disproportionation of the gold ions as well as their reduction by ethylene glycol is found to be important in the formation of the nanoparticles. Photochemical synthesis provides room temperature techniques to generate metal nanoparticles in a variety of environments.
109

Investigation and Fabrication of Nonvolatile Memory Devices with Tungsten Nanocrystals Embedded in Dielectric Layers

Weng, Li-wen 16 July 2007 (has links)
In a conventional nonvolatile memory (NVM), charge is stored in a ploy-silicon floating gate (FG) surrounded by dielectrics. But, it will suffer some limitations for continued scaling of the device structure. Therefore, the nanocrystal nonvolatile memory devices have been investigated to overcome the limit of the conventional floating gate NVM in recently years. Nanocrystal charge storage offers several advantages, the main one being the potential to use thinner tunnel oxide without sacrificing nonvolatility. This is a quite attractive proposition since reducing the tunnel oxide thickness is a key to lowering operating voltage and/or increasing operating speeds. In this thesis, we have fabricated tungsten (W) nanocrystals nonvolatile memory devices. A thin tungsten silicide (W5Si3) layer was deposited on tunnel oxide layer first. The following oxidation was performed in furnace system. The W element tends to segregate downward and precipitate on the tunnel oxide after thermal oxidation. In addition, the silicon element is oxidized into silicon dioxide surrounded tungsten nanocrystals. Also, the carrier gas, such as O2 and N2, were also added as the tungsten silicide deposition. The memory effect and the electrical reliability for W nanocrystals surrounded in different dielectric were also investigated in this study. In addition, the formation mechanism of W nanocrystals with additional silicon oxide capped on tungsten silicide was also investigated. The thicker silicon oxide can effectively control the thermal oxidation condition and prevent thin film degradation. However, the overall oxidation cause the memory window reduction and the electrical characteristics degradation, resulted from the partially oxidation of W nanocrystal to metal-incorporated dielectric. By contrast, we also demonstrated the structure that deposited the charge trapping layer by co-sputtered W and dielectric material as SiO2 or Si3N4 to directly form the W nanocrystal embedded in dielectrics. Besides, the W and Si directly deposited by co-sputtered to adjust the two elements contained ratio had investigated as well in this study. Furthermore, the memory effect and electrical characteristics for germanium (Ge) element incorporated W nanocrystal memory were also discussed. The additional storage element contributes the memory effect. In summary, the memory effect for W nanaocrystal embedded in different dielectric, the effect of the thermal treatment for additional silicon oxide incorporation, and the contribution of the Ge element to the memory effect can be obtained from the fabrication of W nanocrystal memory were finished in this study.
110

Fabrications and Characteristics of Nonvolatile Memory Devices with Sn Nanocrystals Embedded in MIS Structure

Chen, Chao-Yu 26 June 2009 (has links)
Current requirements of nonvolatile memory (NVM) are the high density cells, low-power consumption, high-speed operation and good reliability for the scaling down devices. However, all of the charges stored in the floating gate will leak into the substrate if the tunnel oxide has a leakage path in the conventional NVMs. Therefore, the tunnel oxide thickness is difficult to scale down in terms of charge retention and endurance. The nanocrystal nonvolatile memories are one of promising substitution, because the discrete storage nodes as the charge storage media have been effectively improve data retention under endurance test for the scaling down device. Many methods have been developed recently for the formation of nanocrystals. Generally, most methods need thermal treatment with high temperature and long duration. This procedure will influence thermal budget and throughput in current manufacture technology of semiconductor industry. And supercritical carbon dioxide (SCCO2) has been researched to the passivation of dielectric and reducing the activation energy. The research estimates SCCO2 is potential to form nanocrystals for these reason. This research is to discuss the feasibility of fabricating nanocrystal NVMs device with low temperature SCCO2. The low melting point metal material Sn is used for the attempts. In order to check if Sn can be used for fabricating nanocrystal NVMs device, the research selects the conventional thermal annealing method first. It uses rapid thermal annealing to improve the crystalline of nanocrystals and reliability of the memory device. Compare to different Sn containment or chemistry and different process, analyze the electric characteristics and materials chemistry. At last, select the Sn and SiO2 co-sputtering film to try the SCCO2 process and analyze these characteristics as well. Due to the novel technology, many physical mechanism and improvement of properties will be discuss following.

Page generated in 0.0616 seconds