• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 906
  • 40
  • 34
  • 32
  • 8
  • 8
  • 8
  • 8
  • 8
  • 8
  • 7
  • 6
  • 6
  • 3
  • 3
  • Tagged with
  • 1473
  • 469
  • 316
  • 285
  • 199
  • 184
  • 181
  • 174
  • 162
  • 152
  • 149
  • 139
  • 126
  • 121
  • 120
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1091

Computational Simulation and Analysis of Neuroplasticity

Yancey, Madison E. 03 June 2021 (has links)
No description available.
1092

Vitamin B12 Deficiency Does Not Stimulate Amyloid-beta Toxicity in a Ceanorhabditis elegans Model of Alzheimer’s Disease

Showemimo, Opeyemi F 01 May 2021 (has links)
Alzheimer’s disease (AD) is symptomized by amyloid-beta plaques in the brain and accounts for more than 65 percent of dementia cases. Vitamin B12 (cobalamin) deficiency can result in similar cognitive impairment and roughly 15% of the elderly are vitamin B12 deficient. Vitamin B12 deficiency results in the accumulation of toxic methylmalonic acid and homocysteine. Hyperhomocysteinemia is a strong risk factor for AD. To test if vitamin B12 deficiency stimulates amyloid-beta toxicity, Caenorhabditis elegans expressing amyloid-beta in muscle were fed either vitamin B12-deficient OP50-1 or vitamin B12-rich HT115(DE3) E. coli bacteria. Increased amyloid-beta toxicity was found in worms fed the 0P50-1 diet. Supplementation of the OP50-1 diet with vitamin B12 did not rescue the increased C. elegans toxicity. Knockdown of either of the only two C. elegans vitamin B12-dependent enzymes metr-1 or mmmc-1 protected against toxicity. Therefore, vitamin B12 deficiency does not stimulate Alzheimer’s amyloid-beta-mediated toxicity in C. elegans.
1093

Superbursts: Investigation of Abnormal Paroxysmal Bursting Activity in Nerve Cell Networks In Vitro

Suri, Nikita 05 1900 (has links)
Superbursts (SBs) are large, seemingly spontaneous activity fluctuations often encountered in high density neural networks in vitro. Little effort has been put forth to define and analyze SBs which are paroxysmal bursting discharges. Through qualitative and quantitative means, I have described specific occurrences of superbursting activity. A complex of paroxysmal bursting has been termed a "superburst episode," and each individual SB is a "superburst event" which is comprises a fine burst structure. Quantitative calculations (employing overall spike summations and coefficient of variation (CV) calculations), reveal three distinct phases. Phase 1 is a "build up" phase of increasingly strong, coordinated bursting with an average of a 17.6% ± 13.7 increase in activity from reference. Phase 2, the "paroxysmal" phase, is comprised of massive coordinated bursting with high frequency spike content. Individual spike activity increases by 52.9% ± 14.6. Phase 3 is a "recovery phase" of lower coordination and an average of a 50.1% ± 35.6 decrease in spike production from reference. SBs can be induced and terminated by physical manipulation of the medium. Using a peristaltic pump with a flow rate of 0.4ml/min, superbursting activity ceases approximately 28.3 min after the introduction of flow. Alternatively, upon cessation of medium flow superbursting activity reemerges after approximately 8.5 min. Additionally, this study explored other methods capable of inducing superbursting activity using osmotic shocks. The induction and termination of SBs demonstrates that the cell culture environment plays a major role in generating this phenomenon. The observations that high density multi-layer neuronal networks in culture are more likely to enter paroxysmal bursting also supports the hypothesis that enrichment and depletion layers of metabolites and ionic species are involved in such unusual activity. The dynamic similarity of the SB phenomenon with epileptiform discharges make further quantification on the spike pattern level pertinent and important.
1094

The relationship between temperament, character and executive functioning

Dennison, Lisa Kim 23 August 2013 (has links)
Despite emergent attempts to connect temperament to a neurobiological etiology there has been little research that focuses on the relationship between temperament and character and neuropsychological test performance. Therefore, the aim of this study is to explore the relationship between temperament, character and performance on neuropsychological tests of executive functioning. Temperament and character dimensions were operationalized according to the Temperament and Character Inventory (TCI), a 240-item measure that is based on the psychobiological theory of personality. Neuropsychological performance was measured on the University of Pennsylvania Computerized Neuropsychological Test Battery (PennCNP), which is a test of executive functioning and abstract reasoning. The PennCNP comprised a test of Motor Praxis (MPRAXIS), the Penn Abstraction, Inhibition and Working Memory Task (AIM), the Letter-N-Back (LNB2), the Penn Conditional Exclusion Task (PCET), the Penn Short Logical Reasoning Task (SPVRT) and the Short Raven’s Progressive Matrices (SRAVEN). The sample comprised 422 first year psychology students at a residential university in South Africa. The results from this explorative study showed a moderate relationship between temperament, character and executive functioning. The temperament dimensions Novelty Seeking and Reward Dependence were positively related to AIM-NM, AIM and SPVRT, and inversely related to MPRAXIS. These results validate the importance of research that investigates the relationship between temperament and character dimensions and neuropsychological performance. / Dissertation (MA)--University of Pretoria, 2012. / Psychology / unrestricted
1095

Characterization of Inhbb, Heatr5a, & Cyp2s1 Expression in Dorsal Root Ganglia by In-Situ Hybridization

Krech, Joshua D. 03 June 2021 (has links)
No description available.
1096

Differential distribution of co-transmitted cholinergic and GABAergic synaptic inputs onto substantia nigra dopaminergic neurons

Le Gratiet, Keyrian Louis 28 April 2021 (has links)
Neuronal communication in the mammalian brain relies on the presynaptic release of neurotransmitters which bind to ligand-gated ion channels found on postsynaptic neurons to modulate neuronal excitability. One such neurotransmitter is acetylcholine (ACh), a small molecule that is the signalling messenger of the cholinergic system. The cholinergic system is involved in a variety of behavioural functions including motor activity, sensory function, and higher executive commands. Dopaminergic neurons in the substantia nigra pars compacta (SNc) and the basal ganglia in general have long been implicated in initiation and completion of voluntary movement. Studies have shown that cholinergic neurons from two brainstem nuclei, the laterodorsal tegmental nucleus and the pedunculopontine nucleus, project onto substantia nigra dopaminergic (DA) neurons in the midbrain and release ACh, GABA or both to modulate motor behaviours. However, with prior research primarily focused on demonstrating the phenomenon of co-transmission itself, the subcellular distribution and dynamics of ACh and GABA release onto SN DA neurons receiving co-transmitted inputs largely remains to be investigated. The present study investigates the spatial and physiological properties of ACh/GABA co- transmission from brainstem cholinergic axons synapsing onto medial SN DA neurons to understand its role in tuning the neuron’s excitatory-inhibitory balance. To that end, we developed a channelrhodopsin (ChR2)-based functional input mapping technique with high spatial resolution to probe the dendritic distribution of ACh and GABA synaptic inputs onto DA neurons in ChATcre::ChR2 mice. Using this technique, we discovered three different types of monosynaptic inputs from cholinergic axons onto DA cells: co-transmitted ACh/GABA, GABA only, and ACh only. Furthermore, we revealed a somatodendritic patterning of cholinergic input distribution onto DA cells with a predominant GABA conductance along the lateral dendrites and a soma-centered mix ACh/GABA transmission. Physiological findings were corroborated using immunolabeling against VGAT and VAChT, which showed many closely spatially clustered ACh and GABA- specific cholinergic terminals and few truly colocalized VAChT and VGAT terminals. This result revealed that true co-transmission represents a minority of the presynaptic mode of release from cholinergic axons onto medial SN DA neurons, and that the majority actually share closely spatially clustered ACh and GABA-specific cholinergic terminals. To investigate the dynamic properties of soma-centered ACh/GABA transmission, we restricted our stimulation field to the cell body to measure the contribution of nAChR and GABAR-mediated conductances without recruiting the lateralized population of primary GABA inputs. We then employed a deconvolution method to understand the relative plasticity of contributions of nAChRs and GABARs to ACh/GABA transmission onto DA cells. We confirmed an initial dominant GABAergic component of ACh/GABA transmission that was previously reported. However, we found that the GABAergic contribution had a greater decay compared to the ACh component with repeated stimulations. As such the predominant initial inhibition is followed by a subsequent equalization of excitatory and inhibitory conductances. Finally, we performed similar experiments to compare the short-term plasticity of the isolated GABA conductance during 15 Hz stimulation between the populations of mix ACh/GABA inputs proximally and the population of primary GABA inputs found on the lateral dendrites 160 μm from the cell body. Interestingly, the lateral GABA component was more sustained across repeated stimulations compared to the proximal GABA conductance, suggesting a differential contribution to excitation/inhibition balance by spatially distributed populations of ACh and GABA inputs from cholinergic axons onto the dendrites of medial SN DA neurons. To our knowledge, this is the first study to examine the distribution and dynamics of ACh/GABA transmission onto midbrain DA system using fine-scale ChR2-assisted subcellular input mapping and conductance deconvolution. / Graduate / 2022-04-12
1097

A Systems Approach to Dissecting Immune Gene Regulatory Networks in the Modulation of Brain Function

Xu, Yang 20 October 2017 (has links)
Although the central nervous system was long perceived as the ivory tower without immune entities, there is growing evidence that the immune and nervous systems are intimated connected. These two systems have been shown to communicate both cellularly and molecularly under physiological and pathological conditions. Despite our increasing understanding of the interplay between these two systems, there are still numerous open questions. In this thesis, I address such unanswered questions related to: the role of microglia and their mechanism in contributing to pathologies in Rett syndrome; the beneficial effects of T-cell secreted cytokines in supporting social brain function; the evolutionary link of the interactions between the nervous and immune systems; the transcription regulation of a subset of microglia population in common neurodegenerative diseases. Collectively, the current thesis is focused on the joint frontier of bioinformatics and experimental work in neuroimmunology. A multifaceted approach, that includes transcriptomics, genomics and other biomolecular modules, was implemented to unearth signaling pathways and mechanisms underlying the presenting biological phenomena. The findings of this thesis can be summarized as follows: 1) MeCP2 acts as a master regulator in the transcriptional repression of inflammatory stimuli in macrophages; 2) T-cell secreted IFN-γ supports social brain function through an evolutionally conserved interaction between the immune and nervous systems; 3) The APOE-TREM2 pathway regulates the microglia phenotype switch in neurodegenerative diseases. Provided that recent technologies allow for readily manipulating the immune system, the findings presented herein may create new vistas for therapeutic interventions in various neurological disorders.
1098

Neuronal Nicotinic Acetylcholine Receptors: Molecular Targets for Alcoholism and Ethanol Reward: A Dissertation

Hendrickson, Linzy M 28 January 2011 (has links)
While it is clear that most drugs of abuse act to increase extracellular dopamine levels in the nucleus accumbens (NAc), the molecular mechanisms mediating this process vary depending on the molecular target each drug acts on. The rewarding properties of most drugs of abuse including cocaine, amphetamine, and heroin have been well established for some time; however, the molecular mechanisms by which ethanol acts to mediate reward have not been fully elucidated. In this thesis, I have examined the role of nicotinic acetylcholine receptors (nAChRs), known molecular targets for nicotine addiction, in mediating the initial rewarding properties of alcohol. Using a mouse model of voluntary ethanol consumption called Drinking in the Dark (DID), in combination with nAChR pharmacology and mouse genetics, we have provided further evidence for the role of nAChRs in mediating the initial rewardingproperties of ethanol. Because of the vast number of possible functional nAChR subtypes present in the brain, I sought to investigate which subtype of nAChR may be responsible for ethanol reinforcement. To accomplish this, I used twocomplementary nAChR mouse models. The first is a knock-out line that does not express the α4 subunit (α4 KO) and the second is a knock-in line that expresses α4* nAChRs that are hypersensitive to agonist (Leu9′Ala). We have also shown, for the first time, that a specific nAChR subtype, those that contain the α4 subunit (α4*), mediate voluntary ethanol consumption and reward. Next, I examined the role of α4* nAChRs in modulating voluntary ethanol consumption after systemic administration of the FDA approved smoking cessation drug varenicline, a partial agonist of α4* nAChRs. We showed that varenicline and nicotine both reduced acute ethanol consumption in an α4* nAChR dependent mechanism. Taken together, our data indicate that activation of α4* nAChRs is necessary and sufficient for reduction of ethanol consumption and further supports the hypothesis that α4* nAChRs are molecular targets for alcohol cessation therapies.
1099

The Study of Two Strategies for Decreasing Mutant Huntingtin: Degradation by Puromycin Sensitive AminoPeptidase and RNA Interference: A Dissertation

Chaurette, Joanna 22 May 2013 (has links)
Huntington’s disease (HD) is a fatal neurodegenerative disease caused by a CAG repeat expansion in exon 1 of the huntingtin gene, resulting in an expanded polyglutamine (polyQ) repeat in the huntingtin protein. Patients receive symptomatic treatment for motor, emotional, and cognitive impairments; however, there is no treatment to slow the progression of the disease, with death occurring 15-20 years after diagnosis. Mutant huntingtin protein interferes with multiple cellular processes leading to cellular dysfunction and neuronal loss. Due to the complexity of mutant huntingtin toxicity, many approaches to treating each effect are being investigated. Unfortunately, addressing one cause of toxicity might not result in protection from other toxic insults, necessitating a combination of treatments for HD patients. Ideally, single therapy targeting the mutant mRNA or protein could prevent all downstream toxicities caused by mutant huntingtin. In this work, I used animal models to investigate a potential therapeutic target for decreasing mutant huntingtin protein, and I apply bioluminescent imaging to investigate RNA interference to silence mutant huntingtin target sites. The enzyme puromycin sensitive aminopeptidase (PSA) has the unique property of degrading polyQ peptides and been implicated in the degradation of huntingtin. In this study, we looked for an effect of decreased PSA on the pathology and behavior in a mouse model of Huntington’s disease. To achieve this, we crossed HD mice with mice with one functional PSA allele and one inactivated PSA allele. We found that PSA heterozygous HD mice develop a greater number of pathological inclusion bodies, representing an accumulation of mutant huntingtin in neurons. PSA heterozygous HD mice also exhibit worsened performance on the raised-beam test, a test for balance and coordination indicating that the PSA heterozygosity impairs the function of neurons with mutant huntingtin. In order to test whether increasing PSA expression ameliorates the HD phenotype in mice we created an adeno-associated virus (AAV) expressing the human form of PSA (AAV-hPSA). Unexpectedly, testing of AAV-hPSA in non-HD mice resulted in widespread toxicity at high doses. These findings suggest that overexpression of PSA is toxic to neurons in the conditions tested. In the second part of my dissertation work, I designed a model for following the silencing of huntingtin sequences in the brain. Firefly luciferase is a bioluminescent enzyme that is extensively used as a reporter molecule to follow biological processes in vivo using bioluminescent imaging (BLI). I created an AAV expressing the luciferase gene containing huntingtin sequences in the 3'-untranslated region (AAV-Luc-Htt). After co-injection of AAV-Luc-Htt with RNA-silencing molecules (RNAi) into the brain, we followed luciferase activity. Using this method, we tested cholesterol-conjugated siRNA, un-conjugated siRNA, and hairpin RNA targeting both luciferase and huntingtin sequences. Despite being able to detect silencing on isolated days, we were unable to detect sustained silencing, which had been reported in similar studies in tissues other than the brain. We observed an interesting finding that co-injection of cholesterol-conjugated siRNA with AAV-Luc-Htt increased luminescence, findings that were verified in cell culture to be independent of serotype, siRNA sequence, and cell type. That cc-siRNA affects the expression of AAV-Luc-Htt reveals an interesting interaction possibly resulting in increased delivery of AAV into cells or an increase in luciferase expression within the cell. My work presents a method to follow gene silencing of huntingtin targets in the brain, which needs further optimization in order to detect sustained silencing. Finally, in this dissertation I continue the study of bioluminescent imaging in the brain. We use mice that have been injected in the brain with AAV-Luciferase (AAV-Luc) to screen 34 luciferase substrate solutions to identify the greatest light-emitting substrate in the brain. We identify two substrates, CycLuc1 and iPr-amide as substrates with enhanced light-emitting properties compared with D-luciferin, the standard, commercially available substrate. CycLuc1 and iPr-amide were tested in transgenic mice expressing luciferase in dopaminergic neurons. These novel substrates produced luminescence unlike the standard substrate, D-luciferin which was undetectable. This demonstrates that CycLuc1 and iPr-amide improve the sensitivity of BLI in low expression models. We then used CycLuc1 to test silencing of luciferase in the brain using AAV-shRNA (AAV-shLuc). We were unable to detect silencing in treated mice, despite a 50% reduction of luciferase mRNA. The results from this experiment identify luciferase substrates that can be used to image transgenic mice expressing luciferase in dopaminergic neurons. My work contributes new data on the study of PSA as a modifier of Huntington’s disease in a knock-in mouse model of Huntington’s disease. My work also makes contributions to the field of bioluminescent imaging by identifying and testing luciferase substrates in the brain to detect low level of luciferase expression.
1100

Role of Internal Calcium Stores in Exocytosis and Neurotransmission: A Dissertation

Lefkowitz, Jason J. 11 May 2010 (has links)
A central concept in the physiology of neurosecretion is that a rise in cytosolic [Ca2+] in the vicinity of plasmalemmal Ca2+ channels due to Ca2+ influx, elicits exocytosis. This dissertation examines the effect on both spontaneous and elicited exocytosis of a rise in focal cytosolic [Ca2+] in the vicinity of ryanodine receptors (RYRs) due to release from internal stores in the form of Ca2+ syntillas. Ca2+ syntillas are focal cytosolic transients mediated by RYRs, which we first found in hypothalamic magnocellular neuronal terminals. (Scintilla, Latin for spark, found in nerve terminals, normally synaptic structures.) We have also observed Ca2+ syntillas in mouse adrenal chromaffin cells (ACCs). Here the effect of Ca2+syntillas on exocytosis is examined in ACCs, which are widely used as model cells for the study of neurosecretion. Elicited exocytosis employs two sources of Ca2+, one due to influx from the cell exterior through voltage-gated Ca2+ channels (VGCCs) and another due to release from intracellular stores. To eliminate complications arising from Ca2+ influx, the first part of this dissertation examines spontaneous exocytosis where influx is not activated. We report that decreasing syntillas leads to an increase in spontaneous exocytosis measured amperometrically. Two independent lines of experimentation each lead to this conclusion. In one case release from stores was blocked by ryanodine; in another, stores were partially emptied using thapsigargin plus caffeine after which syntillas were decreased. We conclude that Ca2+syntillas act to inhibit spontaneous exocytosis, and we propose a simple model to account quantitatively for this action of syntillas. The second part of this dissertation examines the role of syntillas in elicited exocytosis whereby Ca2+ influx is activated by physiologically relevant levels of stimulation. Catecholamine and neuropeptide release from ACCs into the circulation is controlled by the sympathetic division of the Autonomic Nervous System. To ensure proper homeostasis tightly controlled exocytic mechanisms must exist both in resting conditions, where minimal output is desirable and under stress, where maximal, but not total release is necessary. It is thought that sympathetic discharge accomplishes this task by regulating the frequency of Ca2+ influx through VGCCs, which serves as a direct trigger for exocytosis. But our studies on spontaneous release in ACCs revealed the presence of Ca2+ syntillas, which had the opposite effect of inhibiting release. Therefore, assuming Ca2+-induced Ca2+ release (CICR) via RYRs due to Ca2+ influx through VGCCs, we are confronted with a contradiction. Sympathetic discharge should increase syntilla frequency and that in turn should decreaseexocytosis, a paradox. A simple “explanation” might be that the increase in syntillas would act as a brake to prevent an overly great exocytic release. But upon investigation of this question a different finding emerged. We examined the role of syntillas under varying levels of physiologic stimulation in ACCs using simulated action potentials (sAPs) designed to mimic native input at frequencies associated with stress, 15 Hz, and the basal sympathetic tone, 0.5 Hz. Surprisingly, we found that sAPs delivered at 15 Hz or 0.5 Hz were able to completely abolish Ca2+ syntillas within a time frame of two minutes. This was not expected. Further, a single sAP is all that was necessary to initiate suppression of syntillas. Syntillas remained inhibited after 0.5 Hz stimulation but were only temporarily suppressed (for 2 minutes) by 15 Hz stimulation, where global [Ca2+]i was raised to 1 – 2 μM. Thus we propose that CICR, if present in these cells, is overridden by other processes. Hence it appears that inhibition of syntillas by action potentials in ACCs is due to a new process which is the opposite of CICR. This process needs to be investigated, and that will be one of the very next steps in the future. Finally we conclude that syntilla suppression by action potentials is part of the mechanism for elicited exocytosis, resolving the paradox. In the last chapter speculation is discussed into the mechanisms by which physiologic input in the form of an action potential can inhibit Ca2+ syntillas and furthermore, how the Ca2+ syntilla can inhibit exocytic output.

Page generated in 0.0521 seconds