21 |
Statistical Methods for In-session Hemodialysis MonitoringXu, Yunnan 17 June 2020 (has links)
Motivated by real-time monitoring of dialysis, we aim at detecting difference between groups of Raman spectra generated from dialyzates at different time in one session. Baseline correction being a critical procedure in use of Raman Spectra, existing methods may not perform well on dialysis spectra due to nature of dialyzates, which contain numerous chemicals compounds. We first developed a new baseline correction method, Iterative Smoothing-spline with Root Error Adjustment (ISREA), which automatically adjusts intensities and employs smoothing-spline to produce a baseline in each iteration, providing better performance on dialysis spectra than a popular method Goldindec, and better accuracy regardless of types of samples. We proposed a two sample hypothesis testing on groups of baseline-corrected Raman spectra with ISREA. The uniqueness of the test lies in nature of the tested data. Instead of using Raman spectra as curves, we also consider a vector whose elements are peak intensities of biomarkers, meaning the data is regarded as mixed data and that a spectrum curve and a vector compose one observation. Our method tests on equality of the means of the two groups of mixed data. This method is based on asymptotic properties of the covariance of mixed data and FPCA. Simulation studies shows that our method is applicable to small sample size with proper power and size control. Meanwhile, to locate regions that contribute most to significant difference between two groups of univariate functional data, we developed a method to estimate the a sparse coefficient function by using a L1 norm penalty in functional logistic regression, and compared its performance with other methods. / Doctor of Philosophy / In U.S., there are more than 709,501 patients with End-Stage Renal Disease (ESRD). For those patients, dialysis is a standard treatment. While dialysis is time-consuming, expensive, and uncomfortable, it requires patients to take three sessions every week in facilities, and each session lasts for four hours regardless of patients' condition. An affordable, fast, and widely-applied technique called Raman spectroscopy draws attention. Spectral data from used dialysate samples collected at different time in one session can give information on the dialysis process and thus make real-time monitoring possible. With spectral data, we want to develop a statistical method that helps real-time monitoring on dialysis. This method can provide physicians with statistical evidence on dialysis process to improve their decision making, therefore increases efficiency of dialysis and better serve patients. On the other hand, Raman spectroscopy demands preprocessing called baseline correction on the raw spectra. A baseline is generated because of the nature of Raman technique and its instrumentation, which adds complexity to the spectra and interfere with analysis. Despite popularity of this technique and many existing baseline correction method, we found performance on dialysate spectra under expectation. Hence, we proposed a baseline correction method called Iterative Smoothing-spline with Root Error Adjustment (ISREA) and ISREA can provide better performance than existing methods. In addition, we come up with a method that is able to detect difference between the two groups of ISREA baseline-corrected spectra from dialysate collected at different time. Furthermore, we proposed and applied sparse functional logistic regression on two groups to locate regions where the significant difference comes from.
|
22 |
Growth Aspects And Phonon Confinement Studies On Ion Beam Sputter Deposited Ultra Thin FilmsBalaji, S 11 1900 (has links)
The broad theme of the present research investigation is on the preparation and characterization of the ultra thin films. The emerging field of nano science and technology demands the realization of different materials in nanometer dimension and a comprehensive understanding of their novel properties. Especially, the properties of the semiconducting materials in the nano dimensions are quite different from their bulk phase. A phase transition from semimetalic to semiconducting nature occurs at a thickness < 5nm of Sb ultra thin films. These facts emphasize the need for preparing these materials as nano layers and studying their properties as a function their size.
Among the various characterization methods available to study the structure and the interfaces, Raman spectroscopy has proved to be a useful technique. In addition to revealing the structural information, Raman spectroscopy can bring out the quantum size effects in the lattice vibrational spectra of lower dimensional solids, stress state of the film in the initial growth stages, chemical nature of materials etc. Raman spectroscopy studies on the quantum structure of Ge and Sb are limited. This is attributed to the two serious limitations of the conventional backscattering of Raman signal. 1. The back scattered Raman signal intensity from the ultra thin layer could be below the detection limit. 2. The lower penetration depth of the lasers could inhibit the information from the buried layers. These limitations could be overcome to a major extent by employing an optical interference technique called IERS. This is basically an anti-reflection structure consisting minimum of three layers. These three layers are essential for achieving the interference conditions. The thicknesses of each layer were calculated using a matrix method. IERS structure consists of 1. A reflecting layer at the bottom of the stack (Platinum or Aluminum) 2. The second layer which is grown above the reflecting layer is a transparent dielectric layer, which introduces the necessary phase shift and hence it is called phase layer.(SiO2 or CeO2) 3. The top ultra thin layer which is to be investigated (Ge or Sb), is grown over the dielectric film and it is the layer which absorbs the most of the incident exciting light and it is called the absorbing layer. In this trilayer structure the thickness of the phase layer and the absorbing layer are adjusted in such a way that the light reflected from the air-ultra thin layer interface and the dielectric-reflector interface are equal in amplitude but opposite in phase. This leads to the destructive interference and a perfect anti-reflection condition is achieved. This enhances the near surface local field and results in the enhanced Raman signal.
Regarding the reflection layer, thermally evaporated Al films were used. But the surface studies revealed a large surface roughness of 2.7nm for area of 2 µm×2µm. Also Al is known to react with oxygen and formation of an oxide layer is favored. In an effort to overcome these problems, a platinum layer was chosen instead of Al as a reflecting layer. Dual ion beam sputter deposition was employed to prepare the platinum films and to study the surface property of the films prepared at different secondary ion current density. Thus the process parameters to get the Pt film with the required surface properties were optimized.
To prepare the required phase layer, optical thin films of Ceria were used. The optical and structural property of ceria is found to be sensitive to the process parameters. Hence a new deposition technique for preparing the CeO2 thin films was adopted. This technique is called Dual ion beam Sputter Deposition (DIBSD). This technique involves, two ion sources (Kaufman type). One source is used to sputter the target, which is called the primary ion source and the other one is used to assist the growing film, which is called the secondary ion source. Both argon and oxygen were fed into the secondary ion source and oxygen ions in the mixture of the gases (Ar +O2) react with the growing film and the oxygen stoichiometry in the film is maintained. Also the secondary ion bombardment of the growing film helps in the densification and it leads to the increase in the refractive index of the ceria films. The films were found to grow with a preferential orientation along (111) direction. The optical properties of the films were studied by using the transmission spectra of the films from the spectrophotometer. Powder X-Ray diffraction, and Raman spectroscopy, were employed to study the structural properties. Atomic Force Microscopy was used to examine the surface topography and to estimate the surface statistics. A stress free ceria film with a high refractive index of 2.36 at 600nm was prepared for a secondary ion beam current density of 150µA/cm2 and a beam energy of 150 eV. Raman spectra and X-ray diffraction data of these films have revealed the formation of point defects in these films as a function of secondary ion current density.
Germanium (Ge) ultra thin layers were prepared by using Ion Beam Sputter Deposition (IBSD) as this technique has a good control over the rate of deposition apart from various other advantages. The Ge ultra thin films were prepared on the multilayer stacks with Al or Pt as a reflecting layer. The germanium films were prepared for the various thicknesses ranging from 1-10 nm. These films were prepared on the multilayer stack of reflecting layer and phase layer. The films were prepared for the different substrate temperatures from 40 °C to 300 °C. The films thus prepared have been analyzed by Interference Enhanced Raman Spectroscopy (IERS) for the structural and quantum size effects, by RBS for the thickness and to study interface diffusion, and Atomic Force Microscopy (AFM) for the analysis of nano structure of the grown films and also for the surface statistics. The thickness of the Ge films was found to be same as that had been calculated from the rate of deposition of the films. The films showed increase in the grain sizes with increase in the thickness of the films. The nanostructure of the films from AFM images confirms this observation. IERS of the films shows the transition from the compressive to stress free nature of the film for the nominal thickness of 1 & 2 nm. The quantum size effects of the films show the asymmetric broadening and peak shift and these observations were studied using the spatial correlation model. The TEM studies on the samples with Pt as a reflecting layer show influence of the underlying layer of CeO2 by the formation Moiré fringes.
Antimony (Sb) films were prepared for the different thicknesses (3-10nm) and at different substrate temperatures (40 °C - 200 °C) on the Pt/CeO2 multilayer stacks as the absorbing layer. IERS studies on the films were performed and the results are as follows. Sb films show crystallization with increase in thickness from 3nm to 4nm. The films show amorphous to crystalline transition for the substrate temperature of 200 °C. Quantum size effects on the samples due to the phonon confinement were analyzed by the spatial correlation model. The atomic force microscopic measurements for the nanostructural information on the samples showed that the grain sizes of the films increase with increase in the thickness. Also the surface morphology shows a definite change in the features for the transition of amorphous to crystallization phase.
Chapter 1 introduces the importance of Ge and Sb in the present day technologies. The current state of research on these two materials has been discussed. The importance of ceria and Pt films has been highlighted in the context of IERS and for the applications elsewhere. The advantages and disadvantages of ion beam sputter deposition have been described. The importance of Raman spectroscopy as a characterization tool for the nano structures has been shown in this chapter along with an introduction on Raman spectroscopy. Also, the importance of the other complimentary characterization techniques has been discussed. Chapter 2 presents the experimental details used to deposit and characterize the thin films. Details of IBSD and DIBSD processes are given. The characterization pertaining to structural, surface, optical and compositional properties are dealt in detail. Method to compute the optical constants of a transparent film is also given. Chapter 3 presents the properties of reflecting layers. Structural, surface and the compositional (presence of Ar ion) properties of the DIBSD platinum thin films are presented. Chapter 4 presents the optical, structural and surface properties of DIBSD ceria thin films as a function of process parameters. Chapter 5 deals with the growth and Raman analysis of ultra thin Ge films with Al and Pt as reflecting layers. Chapter 6 deals with the growth and Raman analysis of ultra thin Sb films.
Chapter 7 gives the summary of the thesis and the future scope of the work.
|
23 |
The electrical properties of thin hydrogenated amorphous carbon (a-C:H) insulating films on semiconductor and metal substratesMagill, Donna Patricia January 2000 (has links)
No description available.
|
24 |
Structural studies of PVC gels by Raman spectroscopyJackson, Richard Simon January 1986 (has links)
No description available.
|
25 |
Investigation of resonant Raman scattering in type II GaAs/A1As superlatticesChoi, Hyun-jin January 2001 (has links)
No description available.
|
26 |
Optical and magneto-optical studies of wide-bandgap semiconductorsGriffin, Ivan John January 2000 (has links)
No description available.
|
27 |
Avaliação da higroscopicidade de aerossóis urbanos pela técnica LIDAR Raman / Evaluation of hygroscopic growth of urban aerosols using Raman LIDAR techniqueRODRIGUES, PATRICIA F. 24 February 2015 (has links)
Submitted by Maria Eneide de Souza Araujo (mearaujo@ipen.br) on 2015-02-24T19:21:41Z
No. of bitstreams: 0 / Made available in DSpace on 2015-02-24T19:21:41Z (GMT). No. of bitstreams: 0 / Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) / Tese (Doutorado em Tecnologia Nuclear) / IPEN/T / Instituto de Pesquisas Energeticas e Nucleares - IPEN-CNEN/SP / FAPESP:09/14758-7
|
28 |
Desenvolvimento de um laser Raman com bombeamento transversal em configuração de ângulo rasante / Development of a side-pumped Raman laser in a grazing incidence geometryKORES, CRISTINE C. 23 July 2015 (has links)
Submitted by Claudinei Pracidelli (cpracide@ipen.br) on 2015-07-23T10:59:51Z
No. of bitstreams: 0 / Made available in DSpace on 2015-07-23T10:59:51Z (GMT). No. of bitstreams: 0 / Dissertação (Mestrado em Tecnologia Nuclear) / IPEN/D / Instituto de Pesquisas Energeticas e Nucleares - IPEN-CNEN/SP
|
29 |
Avaliação da higroscopicidade de aerossóis urbanos pela técnica LIDAR Raman / Evaluation of hygroscopic growth of urban aerosols using Raman LIDAR techniqueRODRIGUES, PATRICIA F. 24 February 2015 (has links)
Submitted by Maria Eneide de Souza Araujo (mearaujo@ipen.br) on 2015-02-24T19:21:41Z
No. of bitstreams: 0 / Made available in DSpace on 2015-02-24T19:21:41Z (GMT). No. of bitstreams: 0 / Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) / A cobertura de nuvens e os aerossóis são os dois principais fatores que modulam a energia solar que atinge a superfície e é absorvida pela atmosfera. Esses dois fatores, portanto, têm um papel essencial no clima do planeta. Há atualmente um interesse nos efeitos radiativos dos aerossóis, particularmente por causa da atividade antrópica, que aumenta sua concentração na atmosfera, e por sua íntima relação com a formação de nuvens. Partículas que podem ser ativadas e ganhar água para se tornarem nevoeiro ou gotas de nuvens, na presença de supersaturação de vapor de água, são chamadas de Núcleo de Condensação de Nuvens. O estudo das partículas que aumentam de tamanho com o ganho de água conforme aumenta a umidade relativa (higroscopicidade) torna-se então de fundamental importância no entendimento da contribuição dos aerossóis na regulação do clima do planeta. O LIDAR é um instrumento promissor no estudo da higroscopicidade dos aerossóis atmosféricos, porque pode operar em ambiente não perturbado e em condições muito próximas da saturação. O LIDAR Raman apresenta a vantagem de poder obter o perfil de vapor de água e retroespalhamento de aerossóis no mesmo volume atmosférico e sem nenhuma suposição a priori a respeito da razão LIDAR Este trabalho objetiva avaliar o crescimento higroscópico do material particulado urbano em São Paulo, Brasil, e em Washington, D.C, Estados Unidos durante a campanha NASA-Discover-AQ com o uso da técnica LIDAR Raman, obtendo o fator de crescimento por higroscopicidade. Apesar da metodologia que se baseia na determinação de uma atmosfera bem misturada com o uso de radiossondagem já ter sido utilizada na literatura, este trabalho acrescenta importantes informações, já que não se tem notícias de outros estudos extensos com múltiplos casos feitos com o LIDAR Raman para avaliação de higroscopicidade nos Estados Unidos, bem como é a primeira vez que este estudo é feito em São Paulo, como resultado de três anos de aquisição de dados. Os resultados mostram que é possível identificar o crescimento higroscópico dos aerossóis em ambas os ambientes de estudo, cuja detecção depende de condições atmosféricas que estão raramente presentes, tornando o estudo da higroscopicidade com o LIDAR um desafio que exige uma extensa coleta de dados. Mostram ainda que a determinação da origem e o estudo conjugado das propriedades químicas da população de aerossóis são informações que auxiliariam no entendimento do comportamento higroscópico, aprofundamentos estes que podem ser derivados deste trabalho. / Tese (Doutorado em Tecnologia Nuclear) / IPEN/T / Instituto de Pesquisas Energeticas e Nucleares - IPEN-CNEN/SP / FAPESP:09/14758-7
|
30 |
Desenvolvimento de um laser Raman com bombeamento transversal em configuração de ângulo rasante / Development of a side-pumped Raman laser in a grazing incidence geometryKORES, CRISTINE C. 23 July 2015 (has links)
Submitted by Claudinei Pracidelli (cpracide@ipen.br) on 2015-07-23T10:59:51Z
No. of bitstreams: 0 / Made available in DSpace on 2015-07-23T10:59:51Z (GMT). No. of bitstreams: 0 / Lasers Raman são dispositivos que proporcionam uma maneira prática de transformar comprimentos de onda fundamentais em novas linhas espectrais via Espalhamento Raman Estimulado (Stimulated Raman Scattering - SRS). Quando combinados com outros processos de conversão não lineares, os lasers Raman fornecem acesso a comprimentos de onda na região do visível no espectro eletromagnético, que de outra maneira seriam de difícil acesso, como o laranja-amarelo, verde-limão e diversas linhas no azul. A grande vantagem dos lasers Raman é a possibilidade de geração de múltiplas frequências a partir de uma mesma combinação de cristais, tornando esse tipo de laser dispositivos baratos e compactos quando comparados a tecnologias como OPO. Neste trabalho um cristal de Nd:YVO4 foi bombeado por diodo, em configuração transversal, sendo o cristal o responsável pela emissão laser e pelo espalhamento Raman. Na primeira parte do trabalho, a cavidade utilizada apresentava alto fator de qualidade para o comprimento de onda fundamental (1064 nm) e foi estudada a operação laser do 1º Stokes (1176 nm) em regimes de operação quase contínua (q-cw) e contínua (cw). Foi explorada a configuração com uma dobra do feixe laser em ângulo rasante na superfície de bombeamento, bem como a configuração com duas dobras nesta mesma superfície (double beam mode controlling - DBMC). Na segunda parte do trabalho, um cristal LBO foi utilizado para a geração do segundo harmônico (SHG) em 588 nm, o que corresponde a um laser laranja-amarelo. Foi utilizada a configuração com uma dobra e operação cw,com a qual a cavidade apresentava alto fator de qualidade tanto para o 1064 nm quanto 1176 nm. Com a configuração de uma dobra, foi demonstrado que o laser Raman opera em multimodo, com uma variedade de modos de Hermite-Gauss que puderam ser selecionados através apenas do alinhamento da cavidade, incluindo o modo TEM00. Com configuração DBMC, o laser apresentou operação estável oscilando o modo TEM00. Em 1176 nm em regime q-cw, foi obtida a potência máxima de 8,2 W por pulso (multimodo) e 11,7% de eficiência óptica de conversão (diodo para o 1º Stokes), e operando em modo TEM00 a potência máxima de 3,7 W por pulso e eficiência de 5,4% foi obtida com a configuração de duas dobras, de maneira que a tecnologia DBMC se mostrou eficiente para geração de um laser robusto e estável operando com o modo TEM00. Em regime cw o melhor resultado em termos de potência e eficiência foi obtido com a configuração de uma dobra, correspondendo a 1,8 W e 7,3% de eficiência com o laser operando em multimodo. Com o laser laranja, foi demonstrada a operação do modo TEM00 para potências de bombeamento abaixo de 14,5 W. A potência máxima obtida em multimodo foi 820 mW correspondendo a 4% de eficiência óptica de conversão. / Dissertação (Mestrado em Tecnologia Nuclear) / IPEN/D / Instituto de Pesquisas Energeticas e Nucleares - IPEN-CNEN/SP
|
Page generated in 0.0831 seconds