• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 22
  • 22
  • 22
  • 7
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Comprehensive Simulation of Sputter Deposition

Jimenez, Francisco Javier Unknown Date
No description available.
2

Investigations On The Influence Of Process Parameters On The Deposition Of Samarium Cobalt (SmCo) Permanent Magnetic Thin Films For Microsystems Applications

Balu, R 12 1900 (has links)
The research in permanent magnet thin films focuses on the search of new materials and methods to increase the prevalent data storage limit. In the recent past the work towards the application of these films to micro systems have also gained momentum. Materials like samarium cobalt with better magnetic properties and temperature stability are considered to be suitable in this regard. The essential requirement in miniaturization of these films is to deposit them on silicon substrates that can alleviate the micro fabrication process. In this work, an effort has been made to deposit SmCo films with better magnetic properties on silicon substrates. In the deposition of SmCo, the composition of the deposited films and the structural evolution are found to play an important role in determining the magnetic properties. Proper control over these parameters is essential in controlling the magnetic properties of the deposited films. SmCo being a two component material the composition of the films is dependent on the nature of the source and the transport of the material species from source to substrate. On the other hand, structural evolution is dependent on the energetical considerations between the SmCo lattice and substrate lattice. This most often is dominated by the lattice match between the condensing lattice and the substrate lattice. As such Si does not provide good lattice match to SmCo lattice. Hence suitable underlayers are essential in the deposition of these films. Materials like W, Cu, Mo and Cr were used as underlayers. Out of all these Cr is found to provide good lattice match and adhesion to SmCo lattice. Sputtering being the common deposition tool, SmCo could be sputtered either from the elemental targets of Sm and Co or from the compound target of SmCo5. Sputtering of elemental targets of Sm and Co provides the flexibility of varying the composition whereas sputtering from the SmCo alloy target provides to flexibility of controlling the structural evolution by different process parameters. In this work two different techniques namely Facing Target Sputtering (FTS) and Ion Beam Sputter Deposition (IBSD) were followed in depositing SmCo films. In FTS technique, SmCo films were directly deposited on silicon substrates by simultaneous sputtering of samarium and cobalt targets facing each other. This sputtering geometry enabled to achieve films with a wide composition range of 55 – 95 at. % of cobalt in single deposition. The resulting composition variation and material property variation were investigated in terms of process parameters like pressure, temperature, SubstrateTarget Distance (STD) and InterTarget Distance (ITD). The composition distribution of the films was found to be dependent on the thermalisation distances and the mean free path available during the transport. To explain the process and the composition variation, a simulation model based on Monte Carlo method has been employed. The simulated composition variation trends were in good agreement with that of the experimental observations. IBSD, known for its controlled deposition, was employed to deposit both Cr (as an underlayer) and SmCo films. Cr with close epitaxial match with SmCo induces structural evolution in deposited films. The initial growth conditions were found to play a dominant role in the structural evolution of these Cr films. Hence, initial growth conditions were modified by means of oblique incidence and preferential orientation of (200) plane was obtained. With three different angles of incidence, three different surface orientations of Cr films were achieved. These films were then used as structural templates in the deposition of SmCo films. The influence of parameters like composition, impurities, film thickness, beam energy, ion flux, annealing, angles of incidence and underlayer properties on the structural and magnetic properties of SmCo was studied. The structural evolution of SmCo has been found to depend on the structural orientation of Cr underlayers. This followed the structural relation of SmCo(100)||Cr(110)||Si(100) and SmCo(110)||Cr(100)||Si(100). A mixed surface plane orientation was observed in the case of mixed orientation Cr template. The magnetic coercivities were found to increase from 50 Oe to 5000 Oe with the change in the structure of the deposited films.
3

Growth and characterisation of CN films incorporating fullerene-like species

Alexandrou, Ioannis G. January 1999 (has links)
No description available.
4

Nitrogen Reduction Reaction: Deposition, Characterization and Selectivity of Transition Metal (V, Co and Ti) Oxynitrides as Electrocatalysts

Chukwunenye, Precious O. 12 1900 (has links)
The electrocatalytic nitrogen reduction reaction (NRR) is of considerable interest due to its potential for less energy intensive and environmentally friendly ammonia production which is critical for agricultural and clean energy applications. However, the selectivity of NRR compared to the hydrogen evolution reaction (HER) often poses challenges for various catalysts, including Earth-abundant transition metal oxynitrides like Ti, V, and Co. In this work, a comparative analysis of the selectivity of these three metal oxynitrides was conducted, each having different metal oxophilicities. A combination of electrochemical, surface characterizations and density functional theory (DFT) calculations were employed to directly assess NRR and HER activities under the same reaction conditions. Results show that cobalt oxynitrides exhibit NRR activity at pH 10, involving the electrochemical reduction of both lattice-bound nitrogen and dissolved N2, although more HER activity was observed. In contrast, vanadium oxynitride films displayed HER inactivity at pH 7 and 10 but demonstrated NRR activity at pH 7, while titanium oxynitrides were active at pH 3.2 but inactive under neutral and basic pH conditions. These comprehensive studies highlight substantial variations in HER and NRR selectivity based on transition metal oxophilicity/azaphilicity, indicating distinct mechanisms governing NRR and HER mechanisms.
5

Dinâmica de crescimento de filmes de platina e ouro / Growth dynamics of films of platinum and gold.

Melo, Leonidas Lopes de 28 May 2004 (has links)
O caráter aleatório e não homogêneo do crescimento de filmes finos, por processo de deposição, leva à formação de uma superfície rugosa que obedece, em geral, a uma geometria fractal. A dinâmica de crescimento da superfície do filme pode ser descrita por meio de modelos de crescimento discretos, simulações numéricas e equações diferenciais estocásticas. Os modelos e as equações nos fornecem os expoentes críticos, que descrevem o comportamento da rugosidade com a escala de observação e tempo de deposição. Crescemos filmes de platina e ouro através da técnica de implantação e deposição de íons por imersão em plasma metálico. Determinamos experimentalmente os expoentes críticos por meio de microscopia de tunelamento. Comparamos os nossos resultados experimentais com previsões dadas por alguns modelos teóricos. Verificamos que há um bom acordo entre eles e as previsões dadas pela equação estocástica de Kardar, Parisi e Zhang. A estrutura cristalina dos materiais também foi analisada por meio de difração de raios x. / The randomness and inhomogeneities in the growth of thin films generate a rough surface obeying, in general, fractal geometry. The growth dynamics of film surface can be described by theoretical discrete models, numerical simulations and stochastic differential equations. Models and equations give the critical exponents that describe the behavior of roughness with the observation scale and deposition time. We have synthesized platinum and gold films by metal plasma immersion ion implantation and deposition. We have measured the critical exponents by Scanning Tunneling Microscopy. Our experimental results were compared with some theoretical models predictions. We verified that there is a good agreement between them and the theoretical predictions given by the Kardar, Parisi and Zhang stochastic equation. The crystallographic structure was also analyzed by X-ray diffraction.
6

Studies On Pure And Modified Antiferroelectric PbZrO3 Thin Films

Parui, Jayanta 01 1900 (has links)
Metal oxides crystallized in perovskite structure are generally modified in two different ways. According to the general structural formula ABO3, the two ways are A-site modification and B-site modification. The primary significance of perovskite metal oxides rests on their importance in electronic devices. A particular class of perovskites, namely Lead Zirconate or modified Lead Zirconate has received a special attention because of their unique antiferroelectricity and various applications in devices. Among the other modifications, A-site modification of PbZrO3 by La is rare and not much explored. Chapter 1 describes various applications of antiferroelectric thin films along with the synthesis and characterization of pure and La modified PbZrO3, which are relevant to the work presented in this thesis. Sol-gel processing and spin coating technique to deposit solid oxide thin films are well known for their low cost of deposition as well as for their ability to achieve better stoichiometric chemical composition. Common crack formation problem of sol-gel grown films can be prevented by ‘drying control chemical adhesive’ like polyvinylpyrrolidone (PVP). Heat treatment of sol-gel derived thin films is generally determined by TGA and DTA. Crystalline phase of deposited solid thin films is determined by XRD whereas effect of modification can be ascertained by XRD peak assignment and relative crystalline peak shifting. Sol-gel grown film thickness is measured by common cross sectional SEM whereas AFM can detail the surface morphology. Chapter 2 summarizes the deposition and characterization of pure and La modified PbZrO3 thin films. Any nonmetal, which is insulator, is dielectric material and show dielectric dispersion in a frequency domain of low field alternative current. Among the most common feature of dielectric dispersion, Maxwell – Wagner type dispersion is well known. Similar kind of dielectric dispersion, named Maxwell – Wagner like dispersion, can be observed while the equivalent circuit consists of parallel G – C along with a series R. Universal power law of ac conductivity is the deciding factor to distinguish the nature of dispersion. Structural phase transition can be determined by dielectric response and it is widely known as dielectric phase transition. Effect of La modification on dielectric phase transition of PbZrO3 thin films depends on stabilization or destabilization of antiferroelectricity. Maximum dielectric constants of pure and modified PbZrO3 thin films depend on the crystallographic orientations of the growth. Chapter 3 presents dielectric properties of pure and La modified PbZrO3 thin films and these properties are correlated to the stabilization or destabilization of antiferroelectricity, relative integrated intensity of (202)O film orientation and trapped electron charge due to oxygen vacancies. Charge storage property of a capacitor is determined by the polarization of the capacitor on application of electric field whereas field dependent integrated area of polarization on withdrawal of electric field determines the recoverable capacitive energy storage. Among the three kinds of capacitors like linear or paraelectric, ferroelectric and antiferroelectric capacitors, antiferroelectric capacitor is known to be best for their ability to store huge amount of recoverable energy. The recoverable energy in antiferroelectrics can be increased by increasing squareness of the P – E hysteresis loop, applicable electric field, polarization or by the all possible combinations of them. Chapter 4 describes the correlation of relative integrated intensity of (202)O [RI(202)O] with critical applied electric field of P – E saturation to provide enhanced squareness of the hysteresis loops. This chapter also describes the variation of charge and recoverable energy storage properties with respect to RI(202)O. Like magnetocaloric effect, electrocaloric effect is capable to alter the temperature of a system by adiabatic polarization or depolarization. From the Maxwell’s relation of thermodynamics, assuming, (∂p ) = (∂s )electrocaloric effect can be calculated from temperature dependent polarization value of a paraelectric, ferroelectric or an antiferroelectric. Chapter 5 presents the electrocaloric effect of pure and La modified PbZrO3 thin films. Summary of present study and discussion have been delineated in Chapter 6 along with the future work which can give more insight into the understanding of antiferroelectric PbZrO3 thin films with respect to Pb and Zr site modification and with respect to different electrodes. (For formulas pl see the pdf file of the thesis)
7

Dinâmica de crescimento de filmes de platina e ouro / Growth dynamics of films of platinum and gold.

Leonidas Lopes de Melo 28 May 2004 (has links)
O caráter aleatório e não homogêneo do crescimento de filmes finos, por processo de deposição, leva à formação de uma superfície rugosa que obedece, em geral, a uma geometria fractal. A dinâmica de crescimento da superfície do filme pode ser descrita por meio de modelos de crescimento discretos, simulações numéricas e equações diferenciais estocásticas. Os modelos e as equações nos fornecem os expoentes críticos, que descrevem o comportamento da rugosidade com a escala de observação e tempo de deposição. Crescemos filmes de platina e ouro através da técnica de implantação e deposição de íons por imersão em plasma metálico. Determinamos experimentalmente os expoentes críticos por meio de microscopia de tunelamento. Comparamos os nossos resultados experimentais com previsões dadas por alguns modelos teóricos. Verificamos que há um bom acordo entre eles e as previsões dadas pela equação estocástica de Kardar, Parisi e Zhang. A estrutura cristalina dos materiais também foi analisada por meio de difração de raios x. / The randomness and inhomogeneities in the growth of thin films generate a rough surface obeying, in general, fractal geometry. The growth dynamics of film surface can be described by theoretical discrete models, numerical simulations and stochastic differential equations. Models and equations give the critical exponents that describe the behavior of roughness with the observation scale and deposition time. We have synthesized platinum and gold films by metal plasma immersion ion implantation and deposition. We have measured the critical exponents by Scanning Tunneling Microscopy. Our experimental results were compared with some theoretical models predictions. We verified that there is a good agreement between them and the theoretical predictions given by the Kardar, Parisi and Zhang stochastic equation. The crystallographic structure was also analyzed by X-ray diffraction.
8

Development And Performance Study Of Ion Thrust Measurement System Using Strain Gauge Sensors

Stephen, R John 01 1900 (has links) (PDF)
No description available.
9

Développement de films minces à base de nanoparticules diélectriques et optimisatisation des conditions de dépôt pour fabriquer des condensateurs de découplage utilisés dans des assemblages à haute densité de modules électroniques / Development of thin films based on dielectric nanoparticles and optimisation of the deposition conditions for the fabrication of decoupling capacitors used in high density electronic modules assembling

Tetsi, Emmanuel 05 July 2019 (has links)
Dans le cadre de l’intégration tridimensionnelle (3D) associée à l’utilisation d’un nombre croissant de circuits intégrés (CIs), le besoin en condensateurs de découplage à forte densité de capacité (≥ 1 μF.cm-2), capables d’opérer sur une gamme de fréquences de plus en plus étendue, est crucial afin de limiter les fluctuations de tension d’alimentation au niveau des CIs. Le principal frein au développement de ces condensateurs réside dans l’obtention de couches minces (≤ 100 nm) à partir de matériaux ayant une forte permittivité relative (ε_r > 200 à 1 GHz), des technologies compatibles avec une intégration à grande échelle, et peu coûteux.L’approche proposée dans cette thèse s’appuie d’une part, sur la possibilité de synthétiser des nanoparticules diélectriques à base de Ba0.6Sr0.4TiO3 [BST] (Ø = 16 ± 2 nm, ε_r = 260 à 1 kHz) - obtenues en milieux fluides supercritiques - comme matériau diélectrique et d’autre part, sur la pulvérisation de jets ou spray coating comme technologie de dépôt en couches minces. Dans un premier temps, les nanoparticules de BST ont été synthétisées et fonctionnalisées par l’acide 3-aminopropylphosphonique (APA), dans le but de les disperser dans un solvant et d’obtenir des suspensions colloïdales stables. Les ligands ont aussi pour fonction d’améliorer la tenue mécanique des films (auto-assemblage) sur le substrat de cuivre (Cu). La variation de paramètres liés à la solution à base des nanoparticules (concentration, durée de dispersion mécanique) et à la technique de dépôt (température du substrat, débit), ont permis d’optimiser les conditions pour obtenir des films uniformes à base de nanoparticules fonctionnalisées (BST-APA). Des films de 200 ± 50 nm d’épaisseur ont ainsi pu être obtenus. Après dépôt de plots d’aluminium (Al) sur les films à base de BST-APA et utilisés comme électrode supérieure, les caractéristiques capacité-tension (C-V) et courant-tension (I-V) des condensateurs de structure Al/BST-APA/Cu ont permis d’extraire une densité de capacité élevée (0.71 μF.cm-2) et une densité de courant de fuite (25 μA.cm-2) mesurées à 1 V. Les résultats obtenus au cours de cette thèse montent que la pulvérisation de jets est une alternative aux procédés coûteux reportés (ablation laser, pulvérisation) dans l’état de l’art, pour la fabrication de condensateurs de hautes performances.Mots clés : Condensateurs MIM, couches minces, fluides supercritiques, diélectriques, Ba0.6Sr0.4TiO3, pulvérisation de jets, nanofabrication. / Within the three-dimensional (3D) integration associated with the use of an increasing amount of integrated circuits (ICs), there is strong need of high capacitance density (≥ 1 μF.cm-2) decoupling capacitors, able to operate on large frequency bandwidth, in order to reduce the noise that can compromise the signal integrity in ICs. The main challenge of these capacitors relies on the deposition of thin films (≤ 100 nm) using innovative materials with high relative permittivity (ε_r > 200 à 1 GHz) and «low cost» technologies compatible with large scale integration.On one hand, the proposed approach in this thesis benefits from the possibility of synthetizing – by the supercritical fluid technology – and using Ba0.6Sr0.4TiO3 (BST) nanoparticles (Ø = 16 ± 2 nm, ε_r = 260 at1 kHz) as dielectric material and on the other hand, from the use of spray coating as technique for the deposition of these materials as thin films. First of all, the BST nanoparticles synthesized are functionalized with specific ligands (3-aminopropylphosphonic acid, APA), in order to obtain colloidal suspensions composed by aggregates with size (Ø < 100 nm) showing few fluctuations during two months. The other function of ligands is to improve the adhesion of the deposited films (self-assembling) on the copper (Cu) substrate. Different solvent are studied for the preparation of the solutions : N-méthyl-2-pyrrolidone (NMP), water, methanol and ethanol. The variation of different parameters related to the solution and the deposition technique helped us to define the optimal conditions leading to different thickness of film (200 – 1000 nm) based on pristine (BST) and functionalized nanoparticles (BST-APA). Using ethanol instead of NMP as solvent, enabled us to prevent de formation of a copper oxide layer and organic residues. After deposition of aluminum pads (Al) on BST or BST-APA films and used as top electrode, the capacitance-voltage (C-V) and current-voltage (I-V) characteristics of capacitors with metal-insulator-metal (MIM) structure enabled us to achieve high capacitance density (~ 0.7 μF.cm-2) and low leakage current (~ 25 μA.cm-2) at 1 V.Keywords: MIM capacitors, thin films, supercritical fluids, Ba0.6Sr0.4TiO3, spray coating, nanofabrication in cleanroom.
10

Sol-Gel Derived Titania Films And Their Potential Application As Gas Sensor

Raval, Mehul Chandrakant 12 1900 (has links)
Today there is a great deal of interest in the development of gas sensors for various applications like monitoring of toxic gases, detection in oil reservoirs, mines, homes etc. Solid-state gas sensors have many advantages over the conventional analytical methods and hence are widely used. Amongst them, semiconducting metal-oxides based sensors are popular due to many advantages like low cost, small size, high sensitivity and long life. The present thesis reports a detailed work of TiO2 (Titania) thin film fabrication based on sol-gel method, study of their crystallization behavior and surface morphology, and characterizing them for alcohol sensing properties Sol-gel method is a wet chemical technique with many advantages over the conventional methods and offers a high degree of versatility to modify the film properties. Titania thin films were made with titanium isopropoxide as the precursor and ethanol and isopropanol as the solvents. Also effect of surfactants(PEG and CTAB) on the sol properties and film properties have experimentally examined. A in-house gas sensor testing setup has been designed and fabricated to characterize the sensors. Sensors with three different electrode configurations and also two different electrode material have been tested. The electrode geometry and material play a significant role on the sensing behavior and results for the same have been discussed.

Page generated in 0.114 seconds