• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 40
  • 31
  • 4
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 101
  • 26
  • 24
  • 18
  • 16
  • 15
  • 14
  • 12
  • 11
  • 11
  • 9
  • 9
  • 8
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Gene dosage effects on d-glucosidase synthesis in Saccharomyces cerevisiae

Rudert, Frances Elaine. January 1961 (has links)
Thesis (M.S.)--University of Wisconsin--Madison, 1961. / Typescript. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references (leaves 48-53).
2

Cellular responses to the induction of recombinant genes in Escherichia coli fed batch cultures

Lin, Hongying. January 2000 (has links) (PDF)
Halle, University, Diss., 2000.
3

Transition state investigation of the β-glucosidase of T. maritima

January 2021 (has links)
archives@tulane.edu / β-glucosidase from the hyperthermophilic T. maritima is a retaining family 1 glycohydrolase. The action of this enzyme has been examined against a series of synthesized phenyl glucosides to construct Brønsted plots. The plot of kcat vs pKa exhibits a concave down shape suggesting a change in the rate limiting step from glycosylation to de-glycosylation. Aglycones with pKa<8 show little dependence on leaving group ability, while the poorer substrates for kcat (βlg=-0.39) and all substrates for kcat/KM (βlg=-0.41) were found to depend on leaving group ability to a similar extent. This is consistent with glycosylation being the committed step in catalysis. Solvent kinetic isotope effect studies showed that activity on para nitrophenyl glucoside (pKa=7.15) was unaffected while phenyl glucoside (pKa=9.95) was cleaved more slowly in deuterium oxide (kL/kH=1.54). Solvent kinetic isotope effects saw little change between measurement at 25 and 60 °C. This work suggests a dissociative glycosylation transition state that is stabilized in part by proton donation and a de-glycosylation transition state that involves no proton transfer. / 1 / Ross Zaenglein
4

Caracterização da atividade &#946;-glucosidásica de Humicola insolens / Kinetics characterization of-glucosidasic activities from Humicola insolen

Souza, Flavio Henrique Moreira de 25 June 2009 (has links)
Os materiais lignocelulósicos são os principais resíduos da atividade agroindustrial. Atualmente, é grande a procura por enzimas capazes de degradá-los, visando à produção de diversos compostos químicos, em especial combustíveis renováveis, como o etanol, com baixo impacto ambiental. A celulose é o polissacarídeo majoritário da parede celular das plantas e a macromolécula mais abundante produzida na Terra. A degradação enzimática da celulose é, portanto, de especial significado ambiental e comercial. A celulose é um polissacarídeo linear composto de unidades de glicose ligadas por ligações glicosídicas do tipo -(1,4). A hidrólise enzimática da celulose envolve pelo menos três classes de enzimas: endoglucanases, celobiohidrolases (exoglucanases) e -glucosidases. Apenas as duas primeiras enzimas agem diretamente sobre a celulose, depolimerizando as cadeias e liberando oligossacarídeos de diferentes tamanhos e celobiose. A celobiose é a unidade básica repetitiva da celulose e pode ser convertida em resíduos de glicose pelas -glucosidases. Este sistema enzimático funciona sinergisticamente, e as -glucosidases são responsáveis pelo passo terminal da sacarificação da celulose, liberando as endoglucanases e exoglucanases da inibição por celobiose. Entretanto, em sua grande maioria, as -glucosidases também são inibidas pelo produto da reação catalisada, o que vem despertando um interesse crescente por enzimas tolerantes à glicose. Resultados preliminares mostraram que, quando cultivado em meio líquido empregando avicel como fonte de carbono, o fungo termófilo Humicola insolens é um bom produtor de -glucosidases. Além disso, a atividade do extrato bruto micelial foi estimulada por glicose ou xilose. A análise eletroforética deste extrato bruto, em condições não desnaturantes, revelou ainda a presença de duas bandas de atividade ß-glucosidásica, sendo uma estimulada e outra inibida por glicose em concentração 100 mM. Este trabalho descreve a produção, purificação e caracterização bioquímica de duas -glucosidases miceliais de Humicola insolens. As melhores condições de cultivo para a produção de -glucosidase micelial foram 40°C, 120 rpm, em meio constituído de K2HPO4 0,1%, MgSO4.7H2O 0,05%, solução de traços de elementos (25 L para cada 50 mL de meio), extrato de levedura 0,8% e avicel 0,75%, em pH inicial 6,0. O tempo de cultivo para máxima produção foi de 4 dias. As duas -glucosidases miceliais, denominadas BGH I e BGH II, foram purificadas por um procedimento que envolveu precipitação com sulfato de amônio a 75%, seguida por dessalificação em Sephadex G-25, cromatografia de troca iônica em DEAE fractogel e filtração em gel de Sephacryl S-200. Após a purificação, BGH I atingiu uma atividade específica de 25 U/mg com um rendimento de 7,9% e fator de purificação 27,5 vezes. Já a forma BGH II apresentou atividade específica de 15,2 U/mg, com rendimento de 30% e fator de purificação 16,5 vezes. As enzimas apresentaram um conteúdo de carboidratos totais de 51 % (BGH I) e 21% p/p (BGH II). A forma BGH I apresentou massa molecular aparente, estimada por filtração em gel, de 282 kDa, enquanto para (BGH II) este valor foi de 94 kDa. A análise em SDS-PAGE de BGH II mostrou uma única banda protéica de 55 kDa, sugerindo que a forma nativa da enzima é um homodimero. Já para BGH I foram reveladas 3 bandas, com massa moleculares aparentes de 31 kDa, 52 kDa e 132 kDa, sugerindo uma estrutura tetramérica. Entretanto, considerando que se trata de uma enzima altamente glicosilada, estes resultados devem ser interpretados com cautela. Estudos de espectrometria de massas de BGH II demonstraram boa similaridade da sua seqüência de aminoácidos com aquela de uma -glucosidase de Humicola grisea var. thermoidea, com cerca de 22% de recobrimento. A temperatura ótima de reação foi de 60ºC para ambas as -glucosidases purificadas e os valores de pH ótimo foram 5,0 e 6,0 para BGH I e BGH II, respectivamente. Ambas as enzimas foram estáveis quando incubadas em água até 1 hora, a 50ºC; BGH I apresentou um tempo de meia-vida de 47 min a 60°C, enquanto BGH II apresentou um tempo de meia-vida de 40 min a 55°C. Quando incubadas em tampões de diferentes pH por 24 h, BGH I mostrou-se estável em uma faixa de 5-8 e BGH II em pH 6-8. A forma BGH I apresentou maior especificidade de substrato que BGH II, hidrolisando apenas p-nitrofenil-ß-D-glucopiranosídeo, celobiose e salicina, dentre todos os substratos testados. Já BGH II hidrolisou celobiose, lactose, p-nitrofenil-ß-D-glucopiranosideo, p-nitrofenil-ß-D-fucopiranosídeo, p-nitrofenil-ß-D-xilanopiranosídeo, p-nitrofenil-ß-D-galactopiranosídeo, o-nitrofenil-ß-Dgalactopiranosídeo e salicina. Nenhuma das duas enzimas hidrolisou substratos poliméricos (CMC e Avicel), além de maltose, trealose e sacarose. Estudos cinéticos mostraram que a forma BGH I hidrolisou p-nitrofenil-ß-D-glucopiranosídeo e celobiose com a mesma velocidade máxima (25 U/mg). Porém, a afinidade aparente da enzima foi cerca de 7 vezes maior para o substrato sintético. Já os melhores substratos para BGH II foram p-nitrofenil-ß-D-fucopiranosídeo (VM/KM = 323,3 U/mg.mM) e celobiose (VM/KM = 168,0 U/mg.mM). De maneira muito interessante, a atividade de BGH II foi ativada por glicose ou xilose até concentrações de 400 mM, com efeito estimulatório máximo de cerca de 2 vezes próximo a 100 mM. Em contraste, a atividade de BGH I foi inibida em 95% por glicose 50 mM. Concluindo, a grande eficiência catalítica para substratos naturais, sua boa estabilidade térmica, forte estimulação por glicose e xilose, e tolerância a elevadas concentrações destes monossacarídeos no meio reacional, qualificam a enzima BGH II para aplicação na hidrólise de resíduos celulósicos. / Lignocellulosic materials are the major residues from agroindustrial activities. Currently, there is a great interest in enzymes able to degrade such residues, aiming the production of several chemical products, particularly renewable fuels like ethanol, with low environmental impact. Cellulose is the main polysaccharidic component of the plant cell wall and the most abundant naturally occurring macromolecule on Earth. The enzymatic degradation of cellulose is therefore of great environmental and commercial significance. Cellulose is a linear polysaccharide composed of glucose units, linked by -(1,4)-glycosidic bonds. The enzymatic hydrolysis of cellulose involves at least three types of enzymes: endoglucanases, cellobiohydrolases (exoglucanases), and glucosidases. Only the first two enzymes act directly on cellulose, depolymerizing the cellulose chains and releasing different oligosaccharides and cellobiose. Cellobiose is the basic repetitive unit of cellulose and can be converted into glucose monomers by -glucosidases. This enzymatic system works synergistically, and -Glucosidases are responsible for the terminal step of cellulose saccharification, releasing endoglucanases and cellobiohydrolases from cellobiose inhibition. However, most -Glucosidases are also inhibited by their reaction product, leading to a growing interest in glucose tolerant enzymes. Preliminary results showed that, when grown in liquid medium supplemented with microcrystalline cellulose (avicel®) as carbon source, the thermophilic fungus Humicola insolens is a good producer of -glucosidases. Moreover, the activity of the mycelial crude extract was stimulated by glucose or xylose. The electrophoretic analysis of this crude extract in non-denaturing conditions also revealed the presence of two bands of ß-glucosidase activity, one stimulated and the other inhibited by 100 mM glucose. This study describes the production, purification and biochemical characterization of two mycelial -glucosidases from Humicola insolens. Best culture conditions to mycelial -glucosidase production were 40°C, 120 rpm, in liquid media containing 0,1% K2HPO4, 0,05% MgSO4.7H2O, trace elements solution (25 L/50 mL medium), 0,8% yeast extract and 0,75% avicel, with initial pH adjusted to 6,0. The culture time for maximal production was 4 days. The experimental protocol for the simultaneous purification of both mycelial -glucosidases, named BGH I and BGH II, involved 75% amonium sulfate precipitation, followed by Sephadex G-25 desalting, DEAE-fractogel ion exchange chromatography and gel filtration in Sephacryl S-200. The form BGH I was purified 27.5 fold, reaching a specific activity of 25 U/mg with 7.9% yield. BGH II was purified 16.5 fold, with a yield of about 30% and the specific activity was 15.2 U/mg. The enzymes showed total carbohydrate content of 51% (BGH I) and 21% w/w (BGH II). The apparent molecular masses corresponded to 282 kDa (BGH I) and 94 kDa (BGH II), as estimated by gel filtration. Sodium dodecyl sulfate polyacrylamide gel electrophoresis analysis of BGH II showed a single polypeptide band of 55 kDa, suggesting that the native enzyme is a homodimer. In contrast, three protein bands were revealed for BGH I, corresponding to apparent molecular masses of 31 kDa, 52 kDa e 132 kDa, suggesting a tetrameric structure. However, considering its high level of glycosylation, the results must be considered cautiously. Mass spectrometry analysis of BGH II showed good amino acid sequence similarity with a -glucosidase from Humicola grisea var. thermoidea, with about 22% coverage
5

Caracterização da atividade &#946;-glucosidásica de Humicola insolens / Kinetics characterization of-glucosidasic activities from Humicola insolen

Flavio Henrique Moreira de Souza 25 June 2009 (has links)
Os materiais lignocelulósicos são os principais resíduos da atividade agroindustrial. Atualmente, é grande a procura por enzimas capazes de degradá-los, visando à produção de diversos compostos químicos, em especial combustíveis renováveis, como o etanol, com baixo impacto ambiental. A celulose é o polissacarídeo majoritário da parede celular das plantas e a macromolécula mais abundante produzida na Terra. A degradação enzimática da celulose é, portanto, de especial significado ambiental e comercial. A celulose é um polissacarídeo linear composto de unidades de glicose ligadas por ligações glicosídicas do tipo -(1,4). A hidrólise enzimática da celulose envolve pelo menos três classes de enzimas: endoglucanases, celobiohidrolases (exoglucanases) e -glucosidases. Apenas as duas primeiras enzimas agem diretamente sobre a celulose, depolimerizando as cadeias e liberando oligossacarídeos de diferentes tamanhos e celobiose. A celobiose é a unidade básica repetitiva da celulose e pode ser convertida em resíduos de glicose pelas -glucosidases. Este sistema enzimático funciona sinergisticamente, e as -glucosidases são responsáveis pelo passo terminal da sacarificação da celulose, liberando as endoglucanases e exoglucanases da inibição por celobiose. Entretanto, em sua grande maioria, as -glucosidases também são inibidas pelo produto da reação catalisada, o que vem despertando um interesse crescente por enzimas tolerantes à glicose. Resultados preliminares mostraram que, quando cultivado em meio líquido empregando avicel como fonte de carbono, o fungo termófilo Humicola insolens é um bom produtor de -glucosidases. Além disso, a atividade do extrato bruto micelial foi estimulada por glicose ou xilose. A análise eletroforética deste extrato bruto, em condições não desnaturantes, revelou ainda a presença de duas bandas de atividade ß-glucosidásica, sendo uma estimulada e outra inibida por glicose em concentração 100 mM. Este trabalho descreve a produção, purificação e caracterização bioquímica de duas -glucosidases miceliais de Humicola insolens. As melhores condições de cultivo para a produção de -glucosidase micelial foram 40°C, 120 rpm, em meio constituído de K2HPO4 0,1%, MgSO4.7H2O 0,05%, solução de traços de elementos (25 L para cada 50 mL de meio), extrato de levedura 0,8% e avicel 0,75%, em pH inicial 6,0. O tempo de cultivo para máxima produção foi de 4 dias. As duas -glucosidases miceliais, denominadas BGH I e BGH II, foram purificadas por um procedimento que envolveu precipitação com sulfato de amônio a 75%, seguida por dessalificação em Sephadex G-25, cromatografia de troca iônica em DEAE fractogel e filtração em gel de Sephacryl S-200. Após a purificação, BGH I atingiu uma atividade específica de 25 U/mg com um rendimento de 7,9% e fator de purificação 27,5 vezes. Já a forma BGH II apresentou atividade específica de 15,2 U/mg, com rendimento de 30% e fator de purificação 16,5 vezes. As enzimas apresentaram um conteúdo de carboidratos totais de 51 % (BGH I) e 21% p/p (BGH II). A forma BGH I apresentou massa molecular aparente, estimada por filtração em gel, de 282 kDa, enquanto para (BGH II) este valor foi de 94 kDa. A análise em SDS-PAGE de BGH II mostrou uma única banda protéica de 55 kDa, sugerindo que a forma nativa da enzima é um homodimero. Já para BGH I foram reveladas 3 bandas, com massa moleculares aparentes de 31 kDa, 52 kDa e 132 kDa, sugerindo uma estrutura tetramérica. Entretanto, considerando que se trata de uma enzima altamente glicosilada, estes resultados devem ser interpretados com cautela. Estudos de espectrometria de massas de BGH II demonstraram boa similaridade da sua seqüência de aminoácidos com aquela de uma -glucosidase de Humicola grisea var. thermoidea, com cerca de 22% de recobrimento. A temperatura ótima de reação foi de 60ºC para ambas as -glucosidases purificadas e os valores de pH ótimo foram 5,0 e 6,0 para BGH I e BGH II, respectivamente. Ambas as enzimas foram estáveis quando incubadas em água até 1 hora, a 50ºC; BGH I apresentou um tempo de meia-vida de 47 min a 60°C, enquanto BGH II apresentou um tempo de meia-vida de 40 min a 55°C. Quando incubadas em tampões de diferentes pH por 24 h, BGH I mostrou-se estável em uma faixa de 5-8 e BGH II em pH 6-8. A forma BGH I apresentou maior especificidade de substrato que BGH II, hidrolisando apenas p-nitrofenil-ß-D-glucopiranosídeo, celobiose e salicina, dentre todos os substratos testados. Já BGH II hidrolisou celobiose, lactose, p-nitrofenil-ß-D-glucopiranosideo, p-nitrofenil-ß-D-fucopiranosídeo, p-nitrofenil-ß-D-xilanopiranosídeo, p-nitrofenil-ß-D-galactopiranosídeo, o-nitrofenil-ß-Dgalactopiranosídeo e salicina. Nenhuma das duas enzimas hidrolisou substratos poliméricos (CMC e Avicel), além de maltose, trealose e sacarose. Estudos cinéticos mostraram que a forma BGH I hidrolisou p-nitrofenil-ß-D-glucopiranosídeo e celobiose com a mesma velocidade máxima (25 U/mg). Porém, a afinidade aparente da enzima foi cerca de 7 vezes maior para o substrato sintético. Já os melhores substratos para BGH II foram p-nitrofenil-ß-D-fucopiranosídeo (VM/KM = 323,3 U/mg.mM) e celobiose (VM/KM = 168,0 U/mg.mM). De maneira muito interessante, a atividade de BGH II foi ativada por glicose ou xilose até concentrações de 400 mM, com efeito estimulatório máximo de cerca de 2 vezes próximo a 100 mM. Em contraste, a atividade de BGH I foi inibida em 95% por glicose 50 mM. Concluindo, a grande eficiência catalítica para substratos naturais, sua boa estabilidade térmica, forte estimulação por glicose e xilose, e tolerância a elevadas concentrações destes monossacarídeos no meio reacional, qualificam a enzima BGH II para aplicação na hidrólise de resíduos celulósicos. / Lignocellulosic materials are the major residues from agroindustrial activities. Currently, there is a great interest in enzymes able to degrade such residues, aiming the production of several chemical products, particularly renewable fuels like ethanol, with low environmental impact. Cellulose is the main polysaccharidic component of the plant cell wall and the most abundant naturally occurring macromolecule on Earth. The enzymatic degradation of cellulose is therefore of great environmental and commercial significance. Cellulose is a linear polysaccharide composed of glucose units, linked by -(1,4)-glycosidic bonds. The enzymatic hydrolysis of cellulose involves at least three types of enzymes: endoglucanases, cellobiohydrolases (exoglucanases), and glucosidases. Only the first two enzymes act directly on cellulose, depolymerizing the cellulose chains and releasing different oligosaccharides and cellobiose. Cellobiose is the basic repetitive unit of cellulose and can be converted into glucose monomers by -glucosidases. This enzymatic system works synergistically, and -Glucosidases are responsible for the terminal step of cellulose saccharification, releasing endoglucanases and cellobiohydrolases from cellobiose inhibition. However, most -Glucosidases are also inhibited by their reaction product, leading to a growing interest in glucose tolerant enzymes. Preliminary results showed that, when grown in liquid medium supplemented with microcrystalline cellulose (avicel®) as carbon source, the thermophilic fungus Humicola insolens is a good producer of -glucosidases. Moreover, the activity of the mycelial crude extract was stimulated by glucose or xylose. The electrophoretic analysis of this crude extract in non-denaturing conditions also revealed the presence of two bands of ß-glucosidase activity, one stimulated and the other inhibited by 100 mM glucose. This study describes the production, purification and biochemical characterization of two mycelial -glucosidases from Humicola insolens. Best culture conditions to mycelial -glucosidase production were 40°C, 120 rpm, in liquid media containing 0,1% K2HPO4, 0,05% MgSO4.7H2O, trace elements solution (25 L/50 mL medium), 0,8% yeast extract and 0,75% avicel, with initial pH adjusted to 6,0. The culture time for maximal production was 4 days. The experimental protocol for the simultaneous purification of both mycelial -glucosidases, named BGH I and BGH II, involved 75% amonium sulfate precipitation, followed by Sephadex G-25 desalting, DEAE-fractogel ion exchange chromatography and gel filtration in Sephacryl S-200. The form BGH I was purified 27.5 fold, reaching a specific activity of 25 U/mg with 7.9% yield. BGH II was purified 16.5 fold, with a yield of about 30% and the specific activity was 15.2 U/mg. The enzymes showed total carbohydrate content of 51% (BGH I) and 21% w/w (BGH II). The apparent molecular masses corresponded to 282 kDa (BGH I) and 94 kDa (BGH II), as estimated by gel filtration. Sodium dodecyl sulfate polyacrylamide gel electrophoresis analysis of BGH II showed a single polypeptide band of 55 kDa, suggesting that the native enzyme is a homodimer. In contrast, three protein bands were revealed for BGH I, corresponding to apparent molecular masses of 31 kDa, 52 kDa e 132 kDa, suggesting a tetrameric structure. However, considering its high level of glycosylation, the results must be considered cautiously. Mass spectrometry analysis of BGH II showed good amino acid sequence similarity with a -glucosidase from Humicola grisea var. thermoidea, with about 22% coverage
6

Determination of the Binding Site and the Key Amino Acids on Maize β-Glucosidase Isozyme Glu1 Involved in Binding to β-Glucosidase Aggregating Factor (BGAF)

Yu, Hyun Young 22 May 2009 (has links)
β-Glucosidase zymograms of certain maize genotypes (nulls) do not show any activity bands after electrophoresis. We have shown that a chimeric lectin called β-glucosidase aggregating factor (BGAF) is responsible for the absence of β-glucosidase activity bands on zymograms. BGAF specifically binds to maize β-glucosidase isozymes Glu1 and Glu2 and forms large, insoluble complexes. Furthermore, we have previously shown that the N-terminal (Glu⁵⁰-Val¹⁴⁵) and the C-terminal (Phe⁴⁶⁶-Ala⁵¹²) regions contain residues that make up the BGAF binding site on maize Glu1. However, sequence comparison between sorghum β-glucosidases (dhurrinases, Dhr1 and Dhr2), to which BGAF does not bind, and maize β-glucosidases, and an examination of the 3-D structure of Glu1 suggested that the BGAF binding site on Glu1 is much smaller than predicted previously. To define more precisely the BGAF binding site, we constructed additional chimeric β-glucosidases. The results showed that a region spanning 11 amino acids (Ile⁷²-Thr⁸²) on Glu1 is essential and sufficient for BGAF binding, whereas the extreme N-terminal region Ser¹-Thr²⁹, together with C-terminal region Phe⁴⁶⁶-Ala⁵¹², affects the size of Glu1-BGAF complexes. To determine the importance of each region for binding, we determined the dissociation constants (K<sub>d</sub>) of chimeric β-glucosidase-BGAF interactions. The results demonstrated that the extreme N-terminal and C-terminal regions are important but not essential for binding. To confirm the importance of Ile⁷²-Thr⁸² on Glu1 for BGAF binding, we constructed chimeric Dhr2 (C-11, Dhr2 whose Val⁷²-Glu⁸² region was replaced with the Ile⁷²-Thr⁸² region of Glu1). C-11 binds to BGAF, indicating that the Ile⁷²-Thr⁸² region is indeed a major interaction site on Glu1 involved in BGAF binding. We also constructed mutant β-glucosidases to identify and define the contribution of individual amino acids in the above three regions to BGAF binding. In the N-terminal region (Ile⁷²-Thr⁸²), critical region for BGAF binding, Glu1 mutants K81E and T82Y failed to bind BGAF in the gel-shift assay and their frontal affinity chromatography (FAC) profiles were essentially similar to that of sorghum β-glucosidase (dhurrinase 2, Dhr2), a non-binder, indicating that these two amino acids within Ile⁷²-Thr⁸² region are essential for BGAF binding. In the extreme N-terminal (Ser¹-Thr²⁹) and C-terminal (Phe⁴⁶⁶-Ala⁵¹²) regions, N481E [substitution of asparagine-481 with glutamic acid (as in Dhr)] showed lower affinity for BGAF, whereas none of the single amino acid substitutions in the Ser¹-Thr²⁹ region showed any effect on BGAF binding indicating that these regions play a minor role. To further confirm the importance of lysine-81 and threonine-82 for BGAF binding, we produced a number of Dhr2 mutants, and the results showed that all four unique amino acids (isoleucine-72, asparagine-75, lysine-81, and threonine-82) of Glu1 in the peptide span Ile⁷²-Thr⁸² are required to impart BGAF binding ability to Dhr2. The sequence comparison among plant β-glucosidases supports the hypothesis that BGAF binding is specific to maize β-glucosidases because only maize β-glucosidases have threonine at position 82. / Ph. D.
7

Comparative functional analysis of two alpha-glucosidases, Family 31 Glycoside Hydrolases from the human gut symbiont Bacteroides thetaiotaomicron

Chaudet, Marcia January 2012 (has links)
The human gut is home to a significant number of microorganisms including the dominant symbiont Bacteroides thetaiotaomicron. This microbe is predicted to possess an array of glycoside hydrolases, majority of which are involved in starch utilization. Presented here is a comparative functional analysis of two alpha-glucosidases, Family 31 Glycoside Hydrolases from Bacteroides thetaiotaomicron. Enzymatic kinetics revealed these enzymes both preferentially cleave alpha-(1,6) linkage in comparison to the predicted alpha-(1,4) and favour maltose derived substrates of longer length.
8

Comparative functional analysis of two alpha-glucosidases, Family 31 Glycoside Hydrolases from the human gut symbiont Bacteroides thetaiotaomicron

Chaudet, Marcia January 2012 (has links)
The human gut is home to a significant number of microorganisms including the dominant symbiont Bacteroides thetaiotaomicron. This microbe is predicted to possess an array of glycoside hydrolases, majority of which are involved in starch utilization. Presented here is a comparative functional analysis of two alpha-glucosidases, Family 31 Glycoside Hydrolases from Bacteroides thetaiotaomicron. Enzymatic kinetics revealed these enzymes both preferentially cleave alpha-(1,6) linkage in comparison to the predicted alpha-(1,4) and favour maltose derived substrates of longer length.
9

Mechanism of Substrate Specificity and Catalysis in Retaining β-Glucosidases From Maize and Sorghum

Cicek, Muzaffer 07 October 1999 (has links)
β-glucosidases catalyze the hydrolysis of aryl and alkyl β-D-glucosides as well as glucosides with a carbohydrate moiety. The maize β-glucosidase isozymes Glu1and Glu2 hydrolyze a broad spectrum of substrates in addition to its natural substrate DIMBOAGlc, while the sorghum β-glucosidase Dhr1 (dhurrinase-1) hydrolyzes exclusively its natural substrate dhurrin. For the expression of mature β-glucosidase isozymes Glu1 and Glu2 of maize and Dhr1 of sorghum, complementary DNAs were amplified by PCR and cloned into the expression vector pET-21a. Recombinant Glu1, Glu2 and Dhr1 enzymes were found to display activity towards the physiological substrates DIMBOAGlc and dhurrin, respectively, at levels similar to their native counterparts. It has been a subject of the subsequent studies by our lab and others to investigate what determines the aglycone specificity in β-glucosidases, and how β-glucosidases catalyze the hydrolysis of β-glycosidic bond between sugar and aglycone moieties. Molecular modeling techniques allowed to predict the substrate binding sites in Glu1 and Dhr1. Based on structural analysis of Glu1 and Dhr1, chimeric β-glucosidases (Glu1/Dhr1) were constructed by shuffling the C-terminal amino acids of Glu1 with the homologous region of Dhr1 to study the mechanism of substrate specificity. The resulting chimeric enzymes were characterized with respect to substrate specificity as well as kinetic, immunological, and electrophoretic properties. Shuffling a small portion of the C-terminal region altered the substrate specificity and improved by 2-4 fold the catalytic efficiency on other substrates in the chimeric β-glucosidases. These experiments showed that one or more of the 10 amino acid substitutions in the 30 amino acid long Dhr1 subdomain, 462SSGYTERFGIVYVDRENGCERTMKRSARWL491, plays a key role in dhurrin recognition and hydrolysis. To further investigate dhurrin recognition within this peptide region, two chimeric enzymes containing ⁴⁶²SSGYTERF⁴⁶⁹ and ⁴⁶⁶FAGFTERY⁴⁷³ Dhr1 peptides, respectively, were generated. The kinetic parameters indicated that Dhr1 peptide, ⁴⁶²SSGYTERF⁴⁶⁹, alone is sufficient to convert Glu1 to Dhr1 substrate specificity when it replaces the homologous peptide, ⁴⁶⁶FAGFTERY⁴⁷³, of Glu1. Maize β-glucosidases share high sequence similarities with Family 1 O-glucosidases. Therefore, these proteins are classified as retaining glycosyl hydrolases whose active site contains two glutamic acids (E) as the key catalytic residues, one as a general acid/base catalyst (E191) and the other as a nucleophile (E406). To confirm the identity and function of the acid/base catalyst E191, we have changed this residue to isosteric glutamine (Q) and aspartic acid (D) in both Glu1 and Glu2 isozymes by site-directed mutagenesis. The resulting mutant proteins were purified and their kinetic parameters (K<sub>m</sub>, k<sub>cat</sub> and k<sub>i</sub>) were determined. The replacement of the acid/base catalyst E191 in the active site of maize β-glucosidase by Q and D resulted in inactivation of the enzyme. The kinetic analysis of the E191Q mutants showed that catalytic activity was reduced 200- and 110-fold towards ortho- and para-nitrophenyl- β-D-glucosides, respectively, when compared with the wild type enzyme. The E191D mutants showed no detectable activity towards any of the substrates tested. The back mutation of the E191Q mutants of the Glu1 and Glu2 isozymes to wild type restored full catalytic activity in both cases. These data indicate that E191 in maize β-glucosidases functions as an acid/base catalyst, and its function in catalysis cannot be performed by an isosteric residue such as glutamine or by a carboxyl group on a shorter side chain such as in aspartic acid. / Ph. D.
10

In Vitro Evaluation of Thymoquinone and Thymol Inhibitory Activities Against Alpha-Glucosidase

Maher, Noureddine, Begijian, Argam January 2017 (has links)
Class of 2017 Abstract / Objectives: Evaluate thymoquinone (TQ) and thymol (THY) inhibitory activities against α-glucosidase enzyme by using an in vitro assay and determine the IC50 (concentration of TQ/THY to inhibit 50% of maximum enzyme activity). Methods: Various concentrations of thymoquinone and thymol were incubated, separately, with one concentration of the substrate - p-nitrophenol-α-D-glucopyranoside (PNPG) (<<Km) in presence of α-glucosidase enzyme. A positive and a negative control consisting of acarbose, and buffer, respectively, were included in the incubation as well. The incubation time was set at 30 min in a 37 °C controlled water bath. The enzyme activity was determined by detecting and quantitating the levels of p-nitrophenol using a spectrophotometer set at 405 nm. The percent inhibition exhibited by any studied drug was calculated as shown in equation 1. % inhibition = Absorbance Substrate Alone – Absorbance of Substrate + Inhibitor Absorbance Substrate Alone Results: Results of the in vitro incubation of thymoquinone, thymol and acarbose revealed “statistically” significant inhibition of -glucosidase (p<0.05). At 400 g/ml, thymoquinone inhibited the enzyme activity by ~52 % whereas the enzyme inhibition by thymol and acarbose were calculated to be ~84% and 57%, respectively. IC50 were tentatively determined although the maxima inhibitions of the inhibitors were not reached fully. IC50s were calculated as 234 μg/ml, 304 μg/ml and 157 μg/ml for each of thymoquinone, thymol and acarbose, respectively. Conclusions: Thymoquinone and thymol do exhibit antagonistic pharmacological activity against α-glucosidase.

Page generated in 0.05 seconds