• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 5
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Caracterização da atividade β-glucosidásica de Humicola insolens / Kinetics characterization of-glucosidasic activities from Humicola insolen

Souza, Flavio Henrique Moreira de 25 June 2009 (has links)
Os materiais lignocelulósicos são os principais resíduos da atividade agroindustrial. Atualmente, é grande a procura por enzimas capazes de degradá-los, visando à produção de diversos compostos químicos, em especial combustíveis renováveis, como o etanol, com baixo impacto ambiental. A celulose é o polissacarídeo majoritário da parede celular das plantas e a macromolécula mais abundante produzida na Terra. A degradação enzimática da celulose é, portanto, de especial significado ambiental e comercial. A celulose é um polissacarídeo linear composto de unidades de glicose ligadas por ligações glicosídicas do tipo -(1,4). A hidrólise enzimática da celulose envolve pelo menos três classes de enzimas: endoglucanases, celobiohidrolases (exoglucanases) e -glucosidases. Apenas as duas primeiras enzimas agem diretamente sobre a celulose, depolimerizando as cadeias e liberando oligossacarídeos de diferentes tamanhos e celobiose. A celobiose é a unidade básica repetitiva da celulose e pode ser convertida em resíduos de glicose pelas -glucosidases. Este sistema enzimático funciona sinergisticamente, e as -glucosidases são responsáveis pelo passo terminal da sacarificação da celulose, liberando as endoglucanases e exoglucanases da inibição por celobiose. Entretanto, em sua grande maioria, as -glucosidases também são inibidas pelo produto da reação catalisada, o que vem despertando um interesse crescente por enzimas tolerantes à glicose. Resultados preliminares mostraram que, quando cultivado em meio líquido empregando avicel como fonte de carbono, o fungo termófilo Humicola insolens é um bom produtor de -glucosidases. Além disso, a atividade do extrato bruto micelial foi estimulada por glicose ou xilose. A análise eletroforética deste extrato bruto, em condições não desnaturantes, revelou ainda a presença de duas bandas de atividade ß-glucosidásica, sendo uma estimulada e outra inibida por glicose em concentração 100 mM. Este trabalho descreve a produção, purificação e caracterização bioquímica de duas -glucosidases miceliais de Humicola insolens. As melhores condições de cultivo para a produção de -glucosidase micelial foram 40°C, 120 rpm, em meio constituído de K2HPO4 0,1%, MgSO4.7H2O 0,05%, solução de traços de elementos (25 L para cada 50 mL de meio), extrato de levedura 0,8% e avicel 0,75%, em pH inicial 6,0. O tempo de cultivo para máxima produção foi de 4 dias. As duas -glucosidases miceliais, denominadas BGH I e BGH II, foram purificadas por um procedimento que envolveu precipitação com sulfato de amônio a 75%, seguida por dessalificação em Sephadex G-25, cromatografia de troca iônica em DEAE fractogel e filtração em gel de Sephacryl S-200. Após a purificação, BGH I atingiu uma atividade específica de 25 U/mg com um rendimento de 7,9% e fator de purificação 27,5 vezes. Já a forma BGH II apresentou atividade específica de 15,2 U/mg, com rendimento de 30% e fator de purificação 16,5 vezes. As enzimas apresentaram um conteúdo de carboidratos totais de 51 % (BGH I) e 21% p/p (BGH II). A forma BGH I apresentou massa molecular aparente, estimada por filtração em gel, de 282 kDa, enquanto para (BGH II) este valor foi de 94 kDa. A análise em SDS-PAGE de BGH II mostrou uma única banda protéica de 55 kDa, sugerindo que a forma nativa da enzima é um homodimero. Já para BGH I foram reveladas 3 bandas, com massa moleculares aparentes de 31 kDa, 52 kDa e 132 kDa, sugerindo uma estrutura tetramérica. Entretanto, considerando que se trata de uma enzima altamente glicosilada, estes resultados devem ser interpretados com cautela. Estudos de espectrometria de massas de BGH II demonstraram boa similaridade da sua seqüência de aminoácidos com aquela de uma -glucosidase de Humicola grisea var. thermoidea, com cerca de 22% de recobrimento. A temperatura ótima de reação foi de 60ºC para ambas as -glucosidases purificadas e os valores de pH ótimo foram 5,0 e 6,0 para BGH I e BGH II, respectivamente. Ambas as enzimas foram estáveis quando incubadas em água até 1 hora, a 50ºC; BGH I apresentou um tempo de meia-vida de 47 min a 60°C, enquanto BGH II apresentou um tempo de meia-vida de 40 min a 55°C. Quando incubadas em tampões de diferentes pH por 24 h, BGH I mostrou-se estável em uma faixa de 5-8 e BGH II em pH 6-8. A forma BGH I apresentou maior especificidade de substrato que BGH II, hidrolisando apenas p-nitrofenil-ß-D-glucopiranosídeo, celobiose e salicina, dentre todos os substratos testados. Já BGH II hidrolisou celobiose, lactose, p-nitrofenil-ß-D-glucopiranosideo, p-nitrofenil-ß-D-fucopiranosídeo, p-nitrofenil-ß-D-xilanopiranosídeo, p-nitrofenil-ß-D-galactopiranosídeo, o-nitrofenil-ß-Dgalactopiranosídeo e salicina. Nenhuma das duas enzimas hidrolisou substratos poliméricos (CMC e Avicel), além de maltose, trealose e sacarose. Estudos cinéticos mostraram que a forma BGH I hidrolisou p-nitrofenil-ß-D-glucopiranosídeo e celobiose com a mesma velocidade máxima (25 U/mg). Porém, a afinidade aparente da enzima foi cerca de 7 vezes maior para o substrato sintético. Já os melhores substratos para BGH II foram p-nitrofenil-ß-D-fucopiranosídeo (VM/KM = 323,3 U/mg.mM) e celobiose (VM/KM = 168,0 U/mg.mM). De maneira muito interessante, a atividade de BGH II foi ativada por glicose ou xilose até concentrações de 400 mM, com efeito estimulatório máximo de cerca de 2 vezes próximo a 100 mM. Em contraste, a atividade de BGH I foi inibida em 95% por glicose 50 mM. Concluindo, a grande eficiência catalítica para substratos naturais, sua boa estabilidade térmica, forte estimulação por glicose e xilose, e tolerância a elevadas concentrações destes monossacarídeos no meio reacional, qualificam a enzima BGH II para aplicação na hidrólise de resíduos celulósicos. / Lignocellulosic materials are the major residues from agroindustrial activities. Currently, there is a great interest in enzymes able to degrade such residues, aiming the production of several chemical products, particularly renewable fuels like ethanol, with low environmental impact. Cellulose is the main polysaccharidic component of the plant cell wall and the most abundant naturally occurring macromolecule on Earth. The enzymatic degradation of cellulose is therefore of great environmental and commercial significance. Cellulose is a linear polysaccharide composed of glucose units, linked by -(1,4)-glycosidic bonds. The enzymatic hydrolysis of cellulose involves at least three types of enzymes: endoglucanases, cellobiohydrolases (exoglucanases), and glucosidases. Only the first two enzymes act directly on cellulose, depolymerizing the cellulose chains and releasing different oligosaccharides and cellobiose. Cellobiose is the basic repetitive unit of cellulose and can be converted into glucose monomers by -glucosidases. This enzymatic system works synergistically, and -Glucosidases are responsible for the terminal step of cellulose saccharification, releasing endoglucanases and cellobiohydrolases from cellobiose inhibition. However, most -Glucosidases are also inhibited by their reaction product, leading to a growing interest in glucose tolerant enzymes. Preliminary results showed that, when grown in liquid medium supplemented with microcrystalline cellulose (avicel®) as carbon source, the thermophilic fungus Humicola insolens is a good producer of -glucosidases. Moreover, the activity of the mycelial crude extract was stimulated by glucose or xylose. The electrophoretic analysis of this crude extract in non-denaturing conditions also revealed the presence of two bands of ß-glucosidase activity, one stimulated and the other inhibited by 100 mM glucose. This study describes the production, purification and biochemical characterization of two mycelial -glucosidases from Humicola insolens. Best culture conditions to mycelial -glucosidase production were 40°C, 120 rpm, in liquid media containing 0,1% K2HPO4, 0,05% MgSO4.7H2O, trace elements solution (25 L/50 mL medium), 0,8% yeast extract and 0,75% avicel, with initial pH adjusted to 6,0. The culture time for maximal production was 4 days. The experimental protocol for the simultaneous purification of both mycelial -glucosidases, named BGH I and BGH II, involved 75% amonium sulfate precipitation, followed by Sephadex G-25 desalting, DEAE-fractogel ion exchange chromatography and gel filtration in Sephacryl S-200. The form BGH I was purified 27.5 fold, reaching a specific activity of 25 U/mg with 7.9% yield. BGH II was purified 16.5 fold, with a yield of about 30% and the specific activity was 15.2 U/mg. The enzymes showed total carbohydrate content of 51% (BGH I) and 21% w/w (BGH II). The apparent molecular masses corresponded to 282 kDa (BGH I) and 94 kDa (BGH II), as estimated by gel filtration. Sodium dodecyl sulfate polyacrylamide gel electrophoresis analysis of BGH II showed a single polypeptide band of 55 kDa, suggesting that the native enzyme is a homodimer. In contrast, three protein bands were revealed for BGH I, corresponding to apparent molecular masses of 31 kDa, 52 kDa e 132 kDa, suggesting a tetrameric structure. However, considering its high level of glycosylation, the results must be considered cautiously. Mass spectrometry analysis of BGH II showed good amino acid sequence similarity with a -glucosidase from Humicola grisea var. thermoidea, with about 22% coverage
2

Caracterização da atividade β-glucosidásica de Humicola insolens / Kinetics characterization of-glucosidasic activities from Humicola insolen

Flavio Henrique Moreira de Souza 25 June 2009 (has links)
Os materiais lignocelulósicos são os principais resíduos da atividade agroindustrial. Atualmente, é grande a procura por enzimas capazes de degradá-los, visando à produção de diversos compostos químicos, em especial combustíveis renováveis, como o etanol, com baixo impacto ambiental. A celulose é o polissacarídeo majoritário da parede celular das plantas e a macromolécula mais abundante produzida na Terra. A degradação enzimática da celulose é, portanto, de especial significado ambiental e comercial. A celulose é um polissacarídeo linear composto de unidades de glicose ligadas por ligações glicosídicas do tipo -(1,4). A hidrólise enzimática da celulose envolve pelo menos três classes de enzimas: endoglucanases, celobiohidrolases (exoglucanases) e -glucosidases. Apenas as duas primeiras enzimas agem diretamente sobre a celulose, depolimerizando as cadeias e liberando oligossacarídeos de diferentes tamanhos e celobiose. A celobiose é a unidade básica repetitiva da celulose e pode ser convertida em resíduos de glicose pelas -glucosidases. Este sistema enzimático funciona sinergisticamente, e as -glucosidases são responsáveis pelo passo terminal da sacarificação da celulose, liberando as endoglucanases e exoglucanases da inibição por celobiose. Entretanto, em sua grande maioria, as -glucosidases também são inibidas pelo produto da reação catalisada, o que vem despertando um interesse crescente por enzimas tolerantes à glicose. Resultados preliminares mostraram que, quando cultivado em meio líquido empregando avicel como fonte de carbono, o fungo termófilo Humicola insolens é um bom produtor de -glucosidases. Além disso, a atividade do extrato bruto micelial foi estimulada por glicose ou xilose. A análise eletroforética deste extrato bruto, em condições não desnaturantes, revelou ainda a presença de duas bandas de atividade ß-glucosidásica, sendo uma estimulada e outra inibida por glicose em concentração 100 mM. Este trabalho descreve a produção, purificação e caracterização bioquímica de duas -glucosidases miceliais de Humicola insolens. As melhores condições de cultivo para a produção de -glucosidase micelial foram 40°C, 120 rpm, em meio constituído de K2HPO4 0,1%, MgSO4.7H2O 0,05%, solução de traços de elementos (25 L para cada 50 mL de meio), extrato de levedura 0,8% e avicel 0,75%, em pH inicial 6,0. O tempo de cultivo para máxima produção foi de 4 dias. As duas -glucosidases miceliais, denominadas BGH I e BGH II, foram purificadas por um procedimento que envolveu precipitação com sulfato de amônio a 75%, seguida por dessalificação em Sephadex G-25, cromatografia de troca iônica em DEAE fractogel e filtração em gel de Sephacryl S-200. Após a purificação, BGH I atingiu uma atividade específica de 25 U/mg com um rendimento de 7,9% e fator de purificação 27,5 vezes. Já a forma BGH II apresentou atividade específica de 15,2 U/mg, com rendimento de 30% e fator de purificação 16,5 vezes. As enzimas apresentaram um conteúdo de carboidratos totais de 51 % (BGH I) e 21% p/p (BGH II). A forma BGH I apresentou massa molecular aparente, estimada por filtração em gel, de 282 kDa, enquanto para (BGH II) este valor foi de 94 kDa. A análise em SDS-PAGE de BGH II mostrou uma única banda protéica de 55 kDa, sugerindo que a forma nativa da enzima é um homodimero. Já para BGH I foram reveladas 3 bandas, com massa moleculares aparentes de 31 kDa, 52 kDa e 132 kDa, sugerindo uma estrutura tetramérica. Entretanto, considerando que se trata de uma enzima altamente glicosilada, estes resultados devem ser interpretados com cautela. Estudos de espectrometria de massas de BGH II demonstraram boa similaridade da sua seqüência de aminoácidos com aquela de uma -glucosidase de Humicola grisea var. thermoidea, com cerca de 22% de recobrimento. A temperatura ótima de reação foi de 60ºC para ambas as -glucosidases purificadas e os valores de pH ótimo foram 5,0 e 6,0 para BGH I e BGH II, respectivamente. Ambas as enzimas foram estáveis quando incubadas em água até 1 hora, a 50ºC; BGH I apresentou um tempo de meia-vida de 47 min a 60°C, enquanto BGH II apresentou um tempo de meia-vida de 40 min a 55°C. Quando incubadas em tampões de diferentes pH por 24 h, BGH I mostrou-se estável em uma faixa de 5-8 e BGH II em pH 6-8. A forma BGH I apresentou maior especificidade de substrato que BGH II, hidrolisando apenas p-nitrofenil-ß-D-glucopiranosídeo, celobiose e salicina, dentre todos os substratos testados. Já BGH II hidrolisou celobiose, lactose, p-nitrofenil-ß-D-glucopiranosideo, p-nitrofenil-ß-D-fucopiranosídeo, p-nitrofenil-ß-D-xilanopiranosídeo, p-nitrofenil-ß-D-galactopiranosídeo, o-nitrofenil-ß-Dgalactopiranosídeo e salicina. Nenhuma das duas enzimas hidrolisou substratos poliméricos (CMC e Avicel), além de maltose, trealose e sacarose. Estudos cinéticos mostraram que a forma BGH I hidrolisou p-nitrofenil-ß-D-glucopiranosídeo e celobiose com a mesma velocidade máxima (25 U/mg). Porém, a afinidade aparente da enzima foi cerca de 7 vezes maior para o substrato sintético. Já os melhores substratos para BGH II foram p-nitrofenil-ß-D-fucopiranosídeo (VM/KM = 323,3 U/mg.mM) e celobiose (VM/KM = 168,0 U/mg.mM). De maneira muito interessante, a atividade de BGH II foi ativada por glicose ou xilose até concentrações de 400 mM, com efeito estimulatório máximo de cerca de 2 vezes próximo a 100 mM. Em contraste, a atividade de BGH I foi inibida em 95% por glicose 50 mM. Concluindo, a grande eficiência catalítica para substratos naturais, sua boa estabilidade térmica, forte estimulação por glicose e xilose, e tolerância a elevadas concentrações destes monossacarídeos no meio reacional, qualificam a enzima BGH II para aplicação na hidrólise de resíduos celulósicos. / Lignocellulosic materials are the major residues from agroindustrial activities. Currently, there is a great interest in enzymes able to degrade such residues, aiming the production of several chemical products, particularly renewable fuels like ethanol, with low environmental impact. Cellulose is the main polysaccharidic component of the plant cell wall and the most abundant naturally occurring macromolecule on Earth. The enzymatic degradation of cellulose is therefore of great environmental and commercial significance. Cellulose is a linear polysaccharide composed of glucose units, linked by -(1,4)-glycosidic bonds. The enzymatic hydrolysis of cellulose involves at least three types of enzymes: endoglucanases, cellobiohydrolases (exoglucanases), and glucosidases. Only the first two enzymes act directly on cellulose, depolymerizing the cellulose chains and releasing different oligosaccharides and cellobiose. Cellobiose is the basic repetitive unit of cellulose and can be converted into glucose monomers by -glucosidases. This enzymatic system works synergistically, and -Glucosidases are responsible for the terminal step of cellulose saccharification, releasing endoglucanases and cellobiohydrolases from cellobiose inhibition. However, most -Glucosidases are also inhibited by their reaction product, leading to a growing interest in glucose tolerant enzymes. Preliminary results showed that, when grown in liquid medium supplemented with microcrystalline cellulose (avicel®) as carbon source, the thermophilic fungus Humicola insolens is a good producer of -glucosidases. Moreover, the activity of the mycelial crude extract was stimulated by glucose or xylose. The electrophoretic analysis of this crude extract in non-denaturing conditions also revealed the presence of two bands of ß-glucosidase activity, one stimulated and the other inhibited by 100 mM glucose. This study describes the production, purification and biochemical characterization of two mycelial -glucosidases from Humicola insolens. Best culture conditions to mycelial -glucosidase production were 40°C, 120 rpm, in liquid media containing 0,1% K2HPO4, 0,05% MgSO4.7H2O, trace elements solution (25 L/50 mL medium), 0,8% yeast extract and 0,75% avicel, with initial pH adjusted to 6,0. The culture time for maximal production was 4 days. The experimental protocol for the simultaneous purification of both mycelial -glucosidases, named BGH I and BGH II, involved 75% amonium sulfate precipitation, followed by Sephadex G-25 desalting, DEAE-fractogel ion exchange chromatography and gel filtration in Sephacryl S-200. The form BGH I was purified 27.5 fold, reaching a specific activity of 25 U/mg with 7.9% yield. BGH II was purified 16.5 fold, with a yield of about 30% and the specific activity was 15.2 U/mg. The enzymes showed total carbohydrate content of 51% (BGH I) and 21% w/w (BGH II). The apparent molecular masses corresponded to 282 kDa (BGH I) and 94 kDa (BGH II), as estimated by gel filtration. Sodium dodecyl sulfate polyacrylamide gel electrophoresis analysis of BGH II showed a single polypeptide band of 55 kDa, suggesting that the native enzyme is a homodimer. In contrast, three protein bands were revealed for BGH I, corresponding to apparent molecular masses of 31 kDa, 52 kDa e 132 kDa, suggesting a tetrameric structure. However, considering its high level of glycosylation, the results must be considered cautiously. Mass spectrometry analysis of BGH II showed good amino acid sequence similarity with a -glucosidase from Humicola grisea var. thermoidea, with about 22% coverage
3

Relação estrutura-função de uma -glucosidase estimulada por glicose e xilose do fungo termófilo Humicola insolens: estudos de evolução dirigida / Structure-function relationship of a glucose-xylose-stimulated -glucosidase from thermophilic fungus Humicola insolens: studies of directed evolution

Meleiro, Luana Parras 14 February 2017 (has links)
Um dos pré-requisitos para a produção economicamente viável de etanol a partir da biomassa lignocelulósica é o desenvolvimento de processos eficientes e baratos de hidrólise enzimática de celulose e hemicelulose. As enzimas respondem por altas percentagens dos custos de hidrólise, pois é necessário utilizar altas cargas enzimáticas para obter rendimentos aceitáveis devido à inibição das enzimas lignocelulolíticas pelos produtos, que se intensifica com o uso de altas concentrações iniciais de biomassa. Uma das estratégias para melhorar a eficiência e diminuir os custos da hidrólise é a identificação de enzimas mais eficientes, com grande atenção para aquelas tolerantes e/ou estimuladas pelos produtos de reação. Nesse contexto, a engenharia de proteínas é uma poderosa ferramenta para o melhoramento e o entendimento da relação estrutura-função destas enzimas. O presente trabalho visou avaliar o efeito da glicosilação sobre as características bioquímicas de uma - glucosidase estimulada por glicose e xilose de Humicola insolens, comparando a enzima nativa e as enzimas recombinantes, expressas em Escherichia coli (Bglhi) e Pichia pastoris (BglhiPp), além de estudar a relação estrutura-função por meio de técnicas de evolução dirigida objetivando o entendimento dos mecanismos envolvidos na estimulação da enzima pelos monossacarídeos. Com relação à glicosilação, a expressão e caracterização da BglhiPp permitiu avaliar que as principais características influenciadas por diferentes conteúdos de carboidratos na enzima foram a temperatura ótima e a termoestabilidade. Já o estudo de evolução dirigida culminou na geração de 4 mutantes com padrão de estimulação por glicose e xilose diferentes da Bglhi (utilizada como controle). Todos os mutantes contêm uma das duas substituições (D237V e N235S) agrupadas ao redor dos subsítios de ligação da aglicona (+1 e +2). Os dados cinéticos e de transglicosilação permitiram sugerir que o mecanismo de estimulação destas enzimas envolve interações alostéricas, modulação das rotas de hidrólise e transglicosilação e competição entre substrato e monossacarídeos pela ligação aos subsítios do sítio ativo. A mutação D237V (presente nos mutantes 4-12D e 5-7H) favoreceu a rota de hidrólise em detrimento à de transglicosilação e a atividade pNP-glucosidásica, mas não a celobiásica, foi estimulada por xilose. A substituição N235S (presente nos mutantes 1-6D e 5-7C) aboliu a preferência por hidrólise ou transglicosilação e a atividade celobiásica, mas não a pNP-glucosidásica, foi fortemente inibida por xilose. Além disso, ambas as mutações diminuíram a tolerância das enzimas pelos monossacarídeos. Estes resultados mostraram que a modulação fina da atividade da Bglhi e das enzimas dos mutantes por glicose e/ou xilose é regulada pelas afinidades relativas dos subsítios da glicona e da aglicona pelos substratos e pelos monossacarídeos livres. As mudanças na topologia e nas propriedades físico-químicas dos subsítios +1 e +2 da aglicona foi proposta por racionalizar os dados cinéticos e de transglicosilação. / One of the prerequisites for the economically viable production of ethanol from the lignocellulosic biomass is the development of efficient and inexpensive processes of enzymatic hydrolysis of cellulose and hemicellulose. The enzymes are responsible for high percentages of hydrolysis costs, since it is necessary to use high enzymatic loads for acceptable yields due to inhibition of lignocellulolitic enzymes by products, which is intensified by the use of high initial concentrations of biomass. One of the strategies to improve efficiency and decrease the costs of hydrolysis is the identification of more efficient enzymes with great attention to those that are tolerant and/or stimulated by the reaction products. In this context, protein engineering is a powerful tool for the improvement and understanding of the structure-function relationship of these enzymes. The present work aimed to evaluate the effect of glycosylation on the biochemical characteristics of glucose and xylose-stimulated -glucosidase from Humicola insolens, comparing the native enzyme and the recombinant enzymes expressed in Escherichia coli (Bglhi) and Pichia pastoris (BglhiPp) and study the structure-function relationship through directed evolution techniques aiming the understanding of the mechanisms involved in the stimulation of the enzyme by the monosaccharides. With regard to glycosylation, the expression and characterization of BglhiPp allowed to evaluate that the main characteristics influenced by different carbohydrate contents in the enzyme were optimum temperature and thermostability. The study of directed evolution culminated in the generation of 4 mutants with pattern of stimulation by glucose and xylose different from Bglhi (used as control). All mutants contain one of the two substitutions (D237V and N235S) grouped around the aglycone binding sites (+1 and +2). The kinetic and transglycosylation data allowed us to suggest that the mechanism of stimulation of these enzymes involves allosteric interactions, modulation of the hydrolysis and transglycosylation routes, and competition between substrate and monosaccharides by binding to the subsites in active site. The mutation D237V (present in mutants 4-12D and 5-7H) favored the hydrolysis route over that of transglycosylation and pNP-glucosidase activity, but not cellobiase activity, was stimulated by xylose. The substitution N235S (present in mutants 1-6D and 5-7C) abolished the preference for hydrolysis or transglycosylation and cellobiase activity, but not pNP-glucosidase activity, was strongly inhibited by xylose. In addition, both mutations decreased the tolerance of the enzymes by the monosaccharides. These results showed that fine modulation of Bglhi and mutant enzymes activities by glucose and/or xylose is regulated by the relative affinities of the glycone and aglycone subsites for the substrates and the free monosaccharides. The changes in the topology and physicochemical properties of the +1/+2 aglycone sites of the mutants have been proposed to rationalize the kinetic and transglycosylation data.
4

Relação estrutura-função de uma -glucosidase estimulada por glicose e xilose do fungo termófilo Humicola insolens: estudos de evolução dirigida / Structure-function relationship of a glucose-xylose-stimulated -glucosidase from thermophilic fungus Humicola insolens: studies of directed evolution

Luana Parras Meleiro 14 February 2017 (has links)
Um dos pré-requisitos para a produção economicamente viável de etanol a partir da biomassa lignocelulósica é o desenvolvimento de processos eficientes e baratos de hidrólise enzimática de celulose e hemicelulose. As enzimas respondem por altas percentagens dos custos de hidrólise, pois é necessário utilizar altas cargas enzimáticas para obter rendimentos aceitáveis devido à inibição das enzimas lignocelulolíticas pelos produtos, que se intensifica com o uso de altas concentrações iniciais de biomassa. Uma das estratégias para melhorar a eficiência e diminuir os custos da hidrólise é a identificação de enzimas mais eficientes, com grande atenção para aquelas tolerantes e/ou estimuladas pelos produtos de reação. Nesse contexto, a engenharia de proteínas é uma poderosa ferramenta para o melhoramento e o entendimento da relação estrutura-função destas enzimas. O presente trabalho visou avaliar o efeito da glicosilação sobre as características bioquímicas de uma - glucosidase estimulada por glicose e xilose de Humicola insolens, comparando a enzima nativa e as enzimas recombinantes, expressas em Escherichia coli (Bglhi) e Pichia pastoris (BglhiPp), além de estudar a relação estrutura-função por meio de técnicas de evolução dirigida objetivando o entendimento dos mecanismos envolvidos na estimulação da enzima pelos monossacarídeos. Com relação à glicosilação, a expressão e caracterização da BglhiPp permitiu avaliar que as principais características influenciadas por diferentes conteúdos de carboidratos na enzima foram a temperatura ótima e a termoestabilidade. Já o estudo de evolução dirigida culminou na geração de 4 mutantes com padrão de estimulação por glicose e xilose diferentes da Bglhi (utilizada como controle). Todos os mutantes contêm uma das duas substituições (D237V e N235S) agrupadas ao redor dos subsítios de ligação da aglicona (+1 e +2). Os dados cinéticos e de transglicosilação permitiram sugerir que o mecanismo de estimulação destas enzimas envolve interações alostéricas, modulação das rotas de hidrólise e transglicosilação e competição entre substrato e monossacarídeos pela ligação aos subsítios do sítio ativo. A mutação D237V (presente nos mutantes 4-12D e 5-7H) favoreceu a rota de hidrólise em detrimento à de transglicosilação e a atividade pNP-glucosidásica, mas não a celobiásica, foi estimulada por xilose. A substituição N235S (presente nos mutantes 1-6D e 5-7C) aboliu a preferência por hidrólise ou transglicosilação e a atividade celobiásica, mas não a pNP-glucosidásica, foi fortemente inibida por xilose. Além disso, ambas as mutações diminuíram a tolerância das enzimas pelos monossacarídeos. Estes resultados mostraram que a modulação fina da atividade da Bglhi e das enzimas dos mutantes por glicose e/ou xilose é regulada pelas afinidades relativas dos subsítios da glicona e da aglicona pelos substratos e pelos monossacarídeos livres. As mudanças na topologia e nas propriedades físico-químicas dos subsítios +1 e +2 da aglicona foi proposta por racionalizar os dados cinéticos e de transglicosilação. / One of the prerequisites for the economically viable production of ethanol from the lignocellulosic biomass is the development of efficient and inexpensive processes of enzymatic hydrolysis of cellulose and hemicellulose. The enzymes are responsible for high percentages of hydrolysis costs, since it is necessary to use high enzymatic loads for acceptable yields due to inhibition of lignocellulolitic enzymes by products, which is intensified by the use of high initial concentrations of biomass. One of the strategies to improve efficiency and decrease the costs of hydrolysis is the identification of more efficient enzymes with great attention to those that are tolerant and/or stimulated by the reaction products. In this context, protein engineering is a powerful tool for the improvement and understanding of the structure-function relationship of these enzymes. The present work aimed to evaluate the effect of glycosylation on the biochemical characteristics of glucose and xylose-stimulated -glucosidase from Humicola insolens, comparing the native enzyme and the recombinant enzymes expressed in Escherichia coli (Bglhi) and Pichia pastoris (BglhiPp) and study the structure-function relationship through directed evolution techniques aiming the understanding of the mechanisms involved in the stimulation of the enzyme by the monosaccharides. With regard to glycosylation, the expression and characterization of BglhiPp allowed to evaluate that the main characteristics influenced by different carbohydrate contents in the enzyme were optimum temperature and thermostability. The study of directed evolution culminated in the generation of 4 mutants with pattern of stimulation by glucose and xylose different from Bglhi (used as control). All mutants contain one of the two substitutions (D237V and N235S) grouped around the aglycone binding sites (+1 and +2). The kinetic and transglycosylation data allowed us to suggest that the mechanism of stimulation of these enzymes involves allosteric interactions, modulation of the hydrolysis and transglycosylation routes, and competition between substrate and monosaccharides by binding to the subsites in active site. The mutation D237V (present in mutants 4-12D and 5-7H) favored the hydrolysis route over that of transglycosylation and pNP-glucosidase activity, but not cellobiase activity, was stimulated by xylose. The substitution N235S (present in mutants 1-6D and 5-7C) abolished the preference for hydrolysis or transglycosylation and cellobiase activity, but not pNP-glucosidase activity, was strongly inhibited by xylose. In addition, both mutations decreased the tolerance of the enzymes by the monosaccharides. These results showed that fine modulation of Bglhi and mutant enzymes activities by glucose and/or xylose is regulated by the relative affinities of the glycone and aglycone subsites for the substrates and the free monosaccharides. The changes in the topology and physicochemical properties of the +1/+2 aglycone sites of the mutants have been proposed to rationalize the kinetic and transglycosylation data.
5

Utilization Of Scytalidium Thermophilum Phenol Oxidase In Bioorganic Synthesis

Kaptan, Yelda 01 September 2004 (has links) (PDF)
ABSTRACT UTILIZATION OF SCYTALIDIUM THERMOPHILUM PHENOL OXIDASE IN BIOORGANIC SYNTHESES Kaptan, Yelda M.S., Department of Biotechnology Supervisor: Prof. Dr. Z&uuml / mr&uuml / t B. &Ouml / gel Co-supervisor: Prof Dr. Ufuk Bakir September 2004, 90 pages In this study, the ultimate aim was to utilize phenol oxidases of Scytalidium thermophilum in bioorganic syntheses. For this purpose, studies were conducted towards enhancing the production of phenol oxidases by Scytalidium thermophilum, developing a suitable method for laccase activity assays, analyzing the effects of organic solvents on phenol oxidase activity and analysis of the biotransformation of a number of organic substrates by phenol oxidases of Scytalidium thermophilum. In order to enhance the production of phenol oxidases, induction experiments were carried out with gallic acid, syringaldazine and chlorogenic acid. Gallic acid was found as the most effective inducer for phenol oxidase production. Inductive effect of edible mushroom Agaricus bisporus was also assayed, however, the phenolic compounds released by mushroom did not represent any induction for phenol oxidase activity of Scytalidium thermophilum. Different substrates were tested and catechol was determined as the most suitable substrate rather than syringaldazine and ABTS. Molar extinction coefficient (e) of catechol was calculated as 3450 M-1 cm-1 and 3700 M-1 cm-1 by using &ldquo / substrate blank&rdquo / and &ldquo / enzyme blank&rdquo / respectively at 420 nm. Kinetic parameters, Km and Vmax for the enzymatic reactions in which catechol was used as substrate were calculated as 52.03 mM and 0.253 U/ml respectively from Lineweaver-Burk plot and as 41.25 mM and 0.2055 U/ml from Hanes-Woolf plot. Effect of some organic solvents on phenol oxidases of Scytalidium thermophilum was assayed and DMSO was found as an appropriate solvent for the organic substrates. Phenol oxidase containing culture supernatant could oxidize benzoin, hydrobenzoin and benzoyl benzoin.

Page generated in 0.0501 seconds